IFRS 13: What Certainty Equivalent Might be Requested when Deriving a Fair Value Based on Risk-Adjusted Expected Cash Flows?
DOI:
https://doi.org/10.47743/saeb-2025-0029Keywords:
fair value, IFRS 13, certainty equivalent method, three-point scenarios, probability assessment.Abstract
The study raises the point to elicit thresholds for certainty equivalents when determining the fair value using Method 1of the present value techniques within the methodology of income approaches. Through applying the risk-measure Value at Risk as indicator for certainty equivalents, it becomes possible to utilise the experience gained from risk management practice. Based on the calculation of certainty equivalents (the risk-adjusted expected income and expenses) observable in AAA-, Baa- and high-yield-rated U.S. corporate bonds, the corresponding Values at Risk were assessed by modelling different probability distributions. The studies reveal that investors in U.S. corporate bonds had accepted certainty equivalents that approximately correspond to Values at Risk with a confidence level in the range between 50 and 75% when taking the yield premium as criterion. In risk management practice, Values at Risk with confidence levels of above 80% are recommended. However, the safety margins then to be demanded reach values of approx. 17-25% on the expected value, which is in drastic contrast to the historical certainty equivalent coefficients.
References
Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2007). Essentials of Modern Business Statistics with Microsoft Excel (T. South-Western Ed. 3 ed.). USA: South-Western: Thomson Higher Education.
Baur, D., Ghebressilasie, R., & Gnädinger, P. (2025). Applying IFRS for the Real Estate Industry (2025 ed.). Switzerland: PricewaterhouseCoopers Switzerland.
BDO. (2022). IFRS IN PRACTICE. IAS 36 Impairment of Assets. Retrieved from https://www.bdo.global/getmedia/2964317e-5ca0-4de1-bbe5-0ae0269a2f06/IFRS-in-Practice-IAS-36-Impairment-of-Assets.pdf
Beccacece, F., Tasca, R., & Tibiletti, L. (2018). The Macaulay Duration: A Key Indicator for the Risk-Adjustment in Fair Value. International Journal of Business and Management, 13(12), 251-260. http://dx.doi.org/10.5539/ijbm.v13n12p251
Beisler, M. W. (2011). Modelling of Input Data Uncertainty Based on Random Set Theory for Evaluation of the Financial Feasibility for Hydropower Projects. (Dissertation Doktor), Technischen Universität Bergakademie Freiberg, Freiberg. Retrieved from https://tubaf.qucosa.de/landing-page/?tx_dlf[id]=https%3A%2F%2Ftubaf.qucosa.de%2Fapi%2Fqucosa%253A22775%2Fmets
Bodea, C. N., & Purnus, A. (2012). Project Risk Simulation Methods - A Comparative Analysis. Management & Marketing, 7(4), 565-580.
Bohušová, H., Svoboda, P., & Blašková, V. (2014). The Uncertainty Associated with the Estimated Lease Term and Its Impact on Financial Statements Items. Procedia Economics and Finance, 12(2014), 76-84. http://dx.doi.org/10.1016/S2212-5671(14)00322-0
Bonano, E. J., Hora, S. C., Keeney, R. L., & von Winterfeldt, D. (1990). Elicitation and Use of Expert Judgment in Performance Assessment for High-Level Radioactive Waste Repositories (NUREG/CR-5411). Retrieved from SUA: https://www.nrc.gov/docs/ML0401/ML040150792.pdf
Bruner, R., Eades, K. M., Harris, R. S., & Higgins, R. F. (1998). Best Practices in Estimating the Cost of Capital: Survey and Synthesis. Financial Practice and Education, 8(1), 13-28.
Busso, D. (2014). Does IFRS 13 Improve the Disclosure of the Fair Value Measurement? GSTF Journal on Business Review (GBR), 3(4), 1-8. http://dx.doi.org/10.7603/s40706-014-0029-3
Chermack, T. J., & Coons, L. (2012). Exploring the Arts of Crafting and Delivering Scenarios. International Journal of Technology Intelligence and Planning, 8(3), 233-253. http://dx.doi.org/10.1504/IJTIP.2012.048572
Cooper, D. R., & Schindler, P. S. (2003). Business Research Methods (9 ed. Vol. 1). New York: McGraw-Hill International Edition.
Crundwell, F. K. (2008). Finance for Engineers: Evaluation and Funding of Capital Projects. London: Springer. http://dx.doi.org/10.1007/978-1-84800-033-9
Cruz, M. (2006). Developing a Framework for Operational Risk Analytics. In M. K. Ong (Ed.), Risk Management: A Modern Perspective (pp. 295-307): Elsevier. http://dx.doi.org/10.1016/B978-012088438-4.50014-9
Dayananda, D., Irons, R., Harrison, S., Herbohn, J., & Rowland, P. (2002). Capital Budgeting: Financial Appraisal of Investment Projects. United Kingdom: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511753701
Elfadaly, F. G. H. M. (2012). Elicitation of Subjective Probability Distributions. (Doctor of Philosophy in Statistics), The Open University, UK. Retrieved from https://oro.open.ac.uk/61721/1/13835951.pdf (13835951)
EPRA. (2013). EPRA Position Paper on IFRS 13: Fair Value Measurement & Illustrative Disclosures (IFRS 13). Retrieved from https://www.epra.com/media/EPRA_Position_Paper_on_IFRS_13_February2013_1360061211090.pdf
European Central Bank. (2015). The Financial Risk Management of the Eurosystem’s Monetary
Policy Operations. Retrieved from Frankfurt, Germany: https://www.ecb.europa.eu/pub/pdf/other/financial_risk_management_of_eurosystem_monetary_policy_operations_201507.en.pdf
Guideline (EU) 2024/1164 of the European Central Bank of 8 February 2024 amending Guideline (EU) 2016/65 on the valuation haircuts applied in the implementation of the Eurosystem monetary policy framework (ECB/2015/35) (ECB/2024/5), 2024/1164 C.F.R. (2024).
Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust Portfolio Optimization and Management: Wiley Finance.
Fioretti, G. (2012). Either, or: Exploration of an Emerging Decision Theory. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 854-864. http://dx.doi.org/10.1109/TSMCC.2011.2177970
Flyvbjerg, B. (2004). Procedures for Dealing with Optimism Bias in Transport Planning. Guidance Document. SSRN, 1(June 2004). http://dx.doi.org/ssrn.com/abstract=2278346
Flyvbjerg, B. (2007). Policy and Planning for Large Infrastructure Projects: Problems, Causes, Cures. Environment and Planning B: planning and design, 34(4), 578-597. http://dx.doi.org/10.1068/b321
FRED. (2024). ICE BofA US High Yield Index Option-Adjusted Spread (BAMLH0A0HYM2). Retrieved 15 August 2024, from FRED https://fred.stlouisfed.org/series/BAMLH0A0HYM2
FRED. (2025a). Moody's Seasoned Aaa Corporate Bond Yield (DAAA). Retrieved 15 August 2024 https://fred.stlouisfed.org/series/DAAA
FRED. (2025b). Moody's Seasoned Aaa Corporate Bond Yield (DBAA). Retrieved 15 August 2024, from FRED https://fred.stlouisfed.org/series/DBAA
FRED. (2025c). Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity, Quoted on an Investment Basis (DGS10). Retrieved 15 August 2024, from FRED https://fred.stlouisfed.org/series/DGS10
FRED. (2025d). Moody's Seasoned Aaa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity (AAA10Y). Retrieved 15 August 2024, from FRED https://fred.stlouisfed.org/series/AAA10Y
FRED. (2025e). Moody's Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity (BAA10Y). Retrieved 15 August 2024, from FRED https://fred.stlouisfed.org/series/BAA10Y
Frey, H. C., & Rubin, E. S. (1992). Evaluate Uncertainties in Advanced Process Technologies. Chemical Engineering Progress, 88(5), 63-70.
GAO. (2009). GAO Cost Estimating and Assessment Guide: Best Practices for Developing and Managing Capital Program Costs (Supersedes GAO-07-1134SP) (GAO-09-3SP). Retrieved from https://www.gao.gov/products/gao-09-3sp
Garthwaite, P. H., Kadane, J. B., & O’Hagan, A. (2005). Statistical Methods for Eliciting Probability Distributions. Journal of the American Statistical Association, 100(470), 680-701. http://dx.doi.org/10.1198/016214505000000105
Garvey, P. R., Flynn, B., Braxton, P., & Lee, R. (2012). Enhanced Scenario-Based Method for Cost Risk Analysis: Theory, Application, and Implementation. Journal of Cost Analysis and Parametrics, 5(2), 98-142. http://dx.doi.org/10.1080/1941658X.2012.734757
Gaudin, P. (2016). Anticipating and Benchmarking Variance in IFRS 9 Expected Credit Losses. Moody's Analytics(July), 1-4. http://dx.doi.org/coilink.org/20.500.12592/0dx8g4
Gilliam, T. A., & Hofmann, R. K. (2018a). Fair Value Accounting: A Manager’s Perspective. In G. Livne & G. Markarian (Eds.), The Routledge Companion to Fair Value in Accounting (1st ed., Vol. 70, pp. 229-252). Abingdon, Oxon: Routledge. http://dx.doi.org/10.4324/9781315621876-13
Gilliam, T. A., & Hofmann, R. K. (2018b). Bank Risk Management – and Fair Value Accounting. In G. Livne & G. Markarian (Eds.), The Routledge Companion to Fair Value in Accounting (1st ed., Vol. 70, pp. 136-154). Abingdon, Oxon: Routledge. http://dx.doi.org/10.4324/9781315621876-8
Gleißner, W., Meyer, M., & Spitzner, J. (2021). Simulationsbasierte Investitionsrechnung: Kalkulation mit Unsicherheit und Risikoadäquate Bewertung. Controlling, 33(2), 22-29. http://dx.doi.org/10.15358/0935-0381-2021-2-22
Goodwin, P., & Wright, G. (2014). Decision Analysis for Management Judgment (5th ed.). United Kingdom: John Wiley & Sons.
Grigore, B., Peters, J., Hyde, C., & Stein, K. (2013). Methods to Elicit Probability Distributions from Experts: A Systematic Review of Reported Practice in Health Technology Assessment. PharmacoEconomics, 31(October 2013), 991-1003. http://dx.doi.org/10.1007/s40273-013-0092-z
Hall, M., Narayanasami, M., Martin, C., & Victor, A. (2023). Fair Value Measurement Handbook US GAAP and IFRS Accounting Standards (137859). Retrieved from UK: https://kpmg.com/xx/en/what-we-do/services/audit/corporate-reporting-institute/ifrs/toolkit/us-gaap-fair-value-measurement.html
Hendricks, D. (1996). Evaluation of Value-at-Risk Models Using Historical Data. Economic policy review, 2(1), 39-70. http://dx.doi.org/10.2139/ssrn.1028807
Hill, P. J. (2012). Simulative Risikoanalyse von Biomethanprojekten. (Doktors der Agrarwissenschaften Doctoral Disertation), Kassel Univ., München.
Howell, D. C. (2010). Statistical Methods for Psychology (4th ed.). Belmont: Cengage Wadsworth. http://dx.doi.org/10.2307/2348956
Huschens, S. (2017). Risikomaße (T. U. Dresden Ed. Vol. 68). Dresden: Wissen Schafft Brucken. http://dx.doi.org/urn:nbn:de:bsz:14-qucosa-222617
IFRS Foundation. (2012). Investment Property Basis for Conclusions on IAS 40 (Vol. IAS 40 BC): International Financial Reporting Standards Foundation.
IFRS Foundation. (2022a). International Financial Reporting Standards Foundation, Business Combinations Illustrative Examples (Vol. IFRS 3): International Financial Reporting Standards Foundation.
IFRS Foundation. (2022b). International Financial Reporting Standard 13 Fair Value Measurement (Vol. IFRS 13): International Financial Reporting Standards Foundation.
IFRS Foundation. (2024). IFRS Accounting Standards Navigator IFRS 16 Leases (Vol. IFRS 16): IFRS.
IPSAS. (2024). Impairment of Cash-Generating AssetsPronouncements. In International Public Sector Accounting Standards Board (Ed.), Handbook of International Public Sector Accounting (Vol. I, pp. 745-764.). New York: International Federation of Accountants (IFAC).
Jørgensen, M., & Teigen, K. H. (2002). Uncertainty Intervals Versus Interval Uncertainty: An Alternative Method for Eliciting Effort Prediction Intervals in Software Development Projects. Paper presented at the International conference on project management (ProMAC).
Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk (3rd ed.). United States: McGraw-Hill.
Kasprik, R. (2024). Deriving Total Project Costs from WBS Elements’ Cost Probability Distributions. Paper presented at the ICEAA 2024 Professional Development & Training Workshop, Minneapolis. https://www.iceaaonline.com/wp-content/uploads/2024/06/MER07-Kasprik-Total-Project-Costs-from-WBS-Paper.pdf
Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2019). Loss Models: From Data to Decisions (5th ed.): John Wiley & Sons.
KPMG. (2011). First Impressions: Fair value measurement. . Retrieved from London, UK: https://assets.kpmg.com/content/dam/kpmg/pdf/2015/03/first-impressions-fair-value-measurement.pdf
Kremers, M. (2002). Value-at-Risk-basierte Messung des Risikopotenzials von Investitionsvorhaben. In R. Hölscher & R. Elfgen (Eds.), Herausforderung Risikomanagement: Identifikation, Bewertung und Steuerung industrieller Risiken (pp. 273-293). Wiesbaden: Gabler Verlag: Gabler. http://dx.doi.org/10.1007/978-3-322-82372-4_15
Lee, R., Braxton, P., Concotta, K., Flynn, B., & Breaux, B. (2012, 26-29 June 2012). SAR Data Analysis, CV Benchmarks, and the Updated NCCA S-Curve Tool. Paper presented at the SCEA/ISPA Joint Annual Conference and Training Workshop, Belgium.
Lennard, A. (2018). Fair Value and the Conceptional Framework. In L. Gilad & G. Markarian (Eds.), The Routledge Companion to Fair Value in Accounting (1st ed., pp. 25-40). London: Routledge. http://dx.doi.org/10.4324/9781315621876-2
Ludke, R. L., Stauss, F. F., & Gustafson, D. H. (1977). Comparison of Five Methods for Estimating Subjective Probability Distributions. Organizational Behavior and Human Performance, 19(1), 162-179. http://dx.doi.org/10.1016/0030-5073(77)90060-5
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., . . . Zwiers, F. W. (2010). Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainty. Retrieved from USA: https://www.ipcc.ch/
Özerhan, Y., & Sultanoğlu, B. (2017). M2M-Fair Value Accounting. In S. Gokten (Ed.), Accounting and Corporate Reporting - Today and Tomorrow (pp. 89-109): IntechOpen. http://dx.doi.org/10.5772/intechopen.68724
Pagani, E. (2015). Certainty Equivalent: Many Meanings of a Mean. SSRN, 24(June), 2615728. http://dx.doi.org/10.2139/ssrn.2615728
Pfeifer, D., & Ragulina, O. (2018). Generating VaR Scenarios under Solvency II with Product Beta Distributions. Risks, 6(4), 122. http://dx.doi.org/10.3390/risks6040122
Purnus, A., & Bodea, C. N. (2013). Considerations on Project Quantitative Risk Analysis. Procedia: Social and Behavioral Sciences, 74(2013), 144-153. http://dx.doi.org/10.1016/j.sbspro.2013.03.031
Rohleder, S., Schmidt, M., & Tettenborn, M. (2017). Bewertungsannahmen des IFRS 13 für nichtfinanzielle Vermögenswerte. Zeitschrift für internationale und kapitalmarktorientierte Rechnungslegung, 15(3), 110-117.
Schnaars, S., & Ziamou, P. (2001). The Essentials of Scenario Writing. Business Horizons, 44(4), 25-31. http://dx.doi.org/10.1016/S0007-6813(01)80044-6
Škoda, M., Bočková, K., & Guzoňová, V. (2023). European Real Estate Properties Valuation: Ten Years After Adopting IFRS 13. HighTech and Innovation Journal, 4(3), 515-530. http://dx.doi.org/10.28991/HIJ-2023-04-03-04
Spetzler, C. S., & Stael von Holstein, C. S. (1975). Exceptional Paper—Probability Encoding in Decision Analysis. Management Science, 22(3), 340-358. http://dx.doi.org/10.1287/mnsc.22.3.340
Stael Von Holstein, C. A. S., & Matheson, J. E. (1978). A Manual for Encoding Probability Distributions. Retrieved from California: https://apps.dtic.mil/sti/tr/pdf/ADA092259.pdf
Sundgren, S., Mäki, J., & Somoza-López, A. (2018). Analyst Coverage, Market Liquidity and Disclosure Quality: A study of Fair Value Disclosures by European Real Estate Companies. The International Journal of Accounting, 53(1), 54-75. http://dx.doi.org/10.1016/j.intacc.2018.02.003
Thomas, D. D., & Fitch, J. (2014). Joint Agency Cost Schedule Risk and Uncertainty Handbook. USA: Naval Center for Cost Analysis.
Weapon Systems Acquisition Reform Act of 2009. An Act to Improve the Organization and Procedures of the Department of Defense for the Acquisition of Major Weapon Systems, and for Other Purposes., 111-23 C.F.R. (2009).
Zhang, Z. (2010). Certainty Equivalent, Risk Premium and Asset Pricing. Frontiers of Business Research in China, 4(2), 325-339. http://dx.doi.org/10.1007/s11782-010-0015-1
Zondervan-Zwijnenburg, M., van de Schoot-Hubeek, W., Lek, K., Hoijtink, H., & van de Schoot, R. (2017). Application and Evaluation of an Expert Judgment Elicitation Procedure for Correlations. Frontiers in Psychology. Frontiers in Psychology, 90(January), 1-15. http://dx.doi.org/10.3389/fpsyg.2017.00090
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rainald Kasprik

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All accepted papers are published on an Open Access basis.
The Open Access License is based on the Creative Commons license.
The non-commercial use of the article will be governed by the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License as currently displayed on https://creativecommons.org/licenses/by-nc-nd/4.0
Under the Creative Commons Attribution-NonCommercial-NoDerivatives license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions:
1. they must attribute the contribution in the manner specified by the author or licensor,
2. they may not use this contribution for commercial purposes,
3. they may not alter, transform, or build upon this work.