Green Entrepreneurship and Digital Transformation of SMEs in Food Industry: Α Bibliometric Analysis
DOI:
https://doi.org/10.47743/saeb-2022-0027Keywords:
green entrepreneurship, digital transformation, food industry, Business performance, Greece, COVID-19.Abstract
The emerging of green entrepreneurship and digital transformation improve businesses’ efficiency and meet consumers’ demand for environmentally sustainable products, reducing the environmental footprint and strengthening corporate responsibility to society. Moreover, the COVID-19 pandemic has become a key event changing our lives while businesses have to change their daily operations and working from home has become the norm. So, it is possible to say that business activities and business models have undergone some form of digital transformation due to the COVID-19 pandemic. In Greece, the Food Industry can be characterized as one of the most dynamic and competitive economic sectors which is distinguished for its growth prospects. The aim of this study is twofold: (i) to investigate the impact of green entrepreneurship and digital transformation into the performance of Greek SMEs in the food sector and (ii) to highlight the new trends integrated in new business models in the sector. To meet the research purpose, a bibliometric and co-citation analysis was used based on the R package and graphene as a subject of research for bibliometric analysis. The knowledge gained in this article shows how the digital transformation changed the functioning of the companies in the food industry. The conclusions of this article are mainly for the enterprises that are considering their own digitalization, which contributes to the long-term sustainability of them.
References
Ahmadi, M., Mohd Osman, M. H., & Aghdam, M. M. (2020). Integrated exploratory factor analysis and Data Envelopment Analysis to evaluate balanced ambidexterity fostering innovation in manufacturing SMEs. Asia Pacific Management Review, 25(3), 142-155. http://dx.doi.org/10.1016/j.apmrv.2020.06.003
Allen, F., Gu, X., & Jagtiani, J. (2022). Fintech, Cryptocurrencies, and CBDC: Financial Structural Transformation in China. Journal of International Money and Finance, 124(June), 102625. http://dx.doi.org/10.1016/j.jimonfin.2022.102625
Alwis, S. D., Hou, Z., Zhang, Y., Na, M. H., Ofoghi, B., & Sajjanhar, A. (2022). A survey on smart farming data, applications and techniques. Computers in Industry, 138(June ), 103624. http://dx.doi.org/10.1016/j.compind.2022.103624
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. http://dx.doi.org/10.1016/j.joi.2017.08.007
Baltas, N. C. (2008). An Analysis of Investment Activity in the Greek Agricultural Products and Food Manufacturing Sector. Journal of Economic Asymmetries, 5(2), 73-80. http://dx.doi.org/10.1016/j.jeca.2008.02.005
Bedell-Pearce, J. (2018). Safe digital transformation for SMEs. Network Security, 2018(11), 6-7. http://dx.doi.org/10.1016/S1353-4858(18)30110-7
Behera, B. S., Panda, B., Behera, R. A., Nayak, N., Behera, A. C., & Jena, S. (2015). Information communication technology promoting retail marketing in agriculture sector in india as a study. Procedia Computer Science, 48(C), 652-659. http://dx.doi.org/10.1016/j.procs.2015.04.148
Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., . . . Goudos, S. K. (2022). Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187. http://dx.doi.org/10.1016/j.iot.2020.100187
Brown, D., Hall, S., & Davis, M. E. (2019). Prosumers in the post subsidy era: An exploration of new prosumer business models in the UK. Energy Policy, 135(December), 110984. http://dx.doi.org/10.1016/j.enpol.2019.110984
Bui, T. D., Tsai, F. M., Tseng, M. L., Tan, R. R., Yu, K. D. S., & Lim, M. K. (2021). Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. Sustainable Production and Consumption, 26(April), 373-410. http://dx.doi.org/10.1016/j.spc.2020.09.017
Chaudhuri, A., Subramanian, N., & Dora, M. (2022). Circular economy and digital capabilities of SMEs for providing value to customers: Combined resource-based view and ambidexterity perspective. Journal of Business Research, 142(March ), 32-44. http://dx.doi.org/10.1016/j.jbusres.2021.12.039
Donaldson, D. A. (2022). Digital from farm to fork: Infrastructures of quality and control in food supply chains. Journal of Rural Studies, 91(April), 228-235. http://dx.doi.org/10.1016/j.jrurstud.2021.10.004
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809-1831. http://dx.doi.org/10.1007/s11192-015-1645-z
Fan, H. (2022). The digital asset value and currency supervision under deep learning and blockchain technology. Journal of Computational and Applied Mathematics, 407(June), 114061. http://dx.doi.org/10.1016/j.cam.2021.114061
Faruk, M., Rahman, M., & Hasan, S. (2021). How digital marketing evolved over time: A bibliometric analysis on scopus database. Heliyon, 7(12), e08603. http://dx.doi.org/10.1016/j.heliyon.2021.e08603
Fraser, A. (2022). ‘You can’t eat data’?: Moving beyond the misconfigured innovations of smart farming. Journal of Rural Studies, 91(April ), 200-207. http://dx.doi.org/10.1016/j.jrurstud.2021.06.010
Hadjielias, E., Christofi, M., Christou, P., & Hadjielia Drotarova, M. (2022). Digitalization, agility, and customer value in tourism. Technological Forecasting and Social Change, 175(C), 121334. http://dx.doi.org/10.1016/j.techfore.2021.121334
Hossain, M. R., Akhter, F., & Sultana, M. M. (2022). SMEs in Covid-19 Crisis and Combating Strategies: A Systematic Literature Review (SLR) and A Case from Emerging Economy. Operations Research Perspectives, 9, 100222. http://dx.doi.org/10.1016/j.orp.2022.100222
Kamaruzzaman, W. M. I. W. M., Nasir, N. A. M., Hamidi, N. A. S. M., Yusof, N., Shaifudin, M. S., Suhaimi, A. M. A. A. M., . . . Ghazali, M. S. M. (2022). 25 years of progress on plants as corrosion inhibitors through a bibliometric analysis using the Scopus database (1995–2020). Arabian Journal of Chemistry, 15(4), 103655. http://dx.doi.org/10.1016/j.arabjc.2021.103655
Kok, A., Oostvogels, V. J., de Olde, E. M., & Ripoll-Bosch, R. (2020). Balancing biodiversity and agriculture: Conservation scenarios for the Dutch dairy sector. Agriculture, Ecosystems & Environment, 302( October ), 107103. http://dx.doi.org/10.1016/j.agee.2020.107103
Li, K., Kim, D. J., Lang, K. R., Kauffman, R. J., & Naldi, M. (2020). How should we understand the digital economy in Asia? Critical assessment and research agenda. Electronic Commerce Research and Applications, 44(November–December ), 101004. http://dx.doi.org/10.1016/j.elerap.2020.101004
Nekhoroshkov, V. P., Aroshidze, A. A., Nekhoroshkov, E. V., Yuchzhong, K., Avdokushin, E. F., Kotenko, A. G., & Timukhin, K. M. (2022). Logistics Efficiency of APEC Economies: Diagnosis, Interconnections and Digital Experience for Russia. Transportation Research Procedia, 61, 118-124. http://dx.doi.org/10.1016/j.trpro.2022.01.020
Niknejad, N., Ismail, W., Bahari, M., Hendradi, R., & Salleh, A. Z. (2021). Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environmental Technology & Innovation, 21(February ), 101272. http://dx.doi.org/10.1016/j.eti.2020.101272
Pan, W., Xie, T., Wang, Z., & Ma, L. (2022). Digital economy: An innovation driver for total factor productivity. Journal of Business Research, 139(February), 303-311. http://dx.doi.org/10.1016/j.jbusres.2021.09.061
Popkova, E. G., & Sergi, B. S. (2020). A Digital Economy to Develop Policy Related to Transport and Logistics. Predictive Lessons from Russia. Land Use Policy, 99(December), 105083. http://dx.doi.org/10.1016/j.landusepol.2020.105083
Ragazou, K. (2021). Business Strategies in HR in Times of Crisis: The Case of Agri-Food Industry in Central Greece. Businesses, 1(1), 36-50. http://dx.doi.org/10.3390/businesses1010004
Riccaboni, A., Neri, E., Trovarelli, F., & Pulselli, R. M. (2021). Sustainability-oriented research and innovation in ‘farm to fork’ value chains. Current Opinion in Food Science, 42( December ), 102-112. http://dx.doi.org/10.1016/j.cofs.2021.04.006
Said Mohamed, E., Belal, A. A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Sciences, 24(3), 971-981. http://dx.doi.org/10.1016/j.ejrs.2021.08.007
Saputra, N., Sasanti, N., Alamsjah, F., & Sadeli, F. (2022). Strategic role of digital capability on business agility during COVID-19 era. Procedia Computer Science, 197, 326-335. http://dx.doi.org/10.1016/j.procs.2021.12.147
Shrivastava, A., Nayak, C. K., Dilip, R., Samal, S. R., Rout, S., & Ashfaque, S. M. (2021). Automatic robotic system design and development for vertical hydroponic farming using IoT and big data analysis. Materials Today: Proceedings. http://dx.doi.org/10.1016/j.matpr.2021.07.294
Suh, J. B., Nicolaides, R., & Trafford, R. (2019). The effects of reducing opportunity and fraud risk factors on the occurrence of occupational fraud in financial institutions. International Journal of Law, Crime and Justice, 56(March ), 79-88. http://dx.doi.org/10.1016/j.ijlcj.2019.01.002
Varshney, D., Kumar, A., Mishra, A. K., Rashid, S., & Joshi, P. K. (2021). India’s COVID-19 social assistance package and its impact on the agriculture sector. Agricultural Systems, 189(April), 103049. http://dx.doi.org/10.1016/j.agsy.2021.103049
Verdouw, C., Tekinerdogan, B., Beulens, A., & Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems, 189(April ), 103046. http://dx.doi.org/10.1016/j.agsy.2020.103046
Xie, L., Chen, Z., Wang, H., Zheng, C., & Jiang, J. (2020). Bibliometric and Visualized Analysis of Scientific Publications on Atlantoaxial Spine Surgery Based on Web of Science and VOSviewer. World Neurosurgery, 137( May ), 435-442.e434. http://dx.doi.org/10.1016/j.wneu.2020.01.171
Yang, Z., Chang, J., Huang, L., & Mardani, A. (2021). Digital transformation solutions of entrepreneurial SMEs based on an information error-driven T-spherical fuzzy cloud algorithm. International Journal of Information Management. Retrieved from https://doi.org/10.1016/j.ijinfomgt.2021.102384
Zhang, X., Gao, C., & Zhang, S. (2022). The niche evolution of cross-boundary innovation for Chinese SMEs in the context of digital transformation - Case study based on dynamic capability. Technology in Society, 68(February), 101870. http://dx.doi.org/10.1016/j.techsoc.2022.101870
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 George Sklavos, Marie-Noelle Duquenne, George Theodossiou
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All accepted papers are published on an Open Access basis.
The Open Access License is based on the Creative Commons license.
The non-commercial use of the article will be governed by the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License as currently displayed on https://creativecommons.org/licenses/by-nc-nd/4.0
Under the Creative Commons Attribution-NonCommercial-NoDerivatives license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions:
1. they must attribute the contribution in the manner specified by the author or licensor,
2. they may not use this contribution for commercial purposes,
3. they may not alter, transform, or build upon this work.