On the Gains of Using High Frequency Data in Portfolio Selection

Authors

  • Rui Pedro Brito
  • Helder Sebastião
  • Pedro Godinho

DOI:

https://doi.org/10.2478/saeb-2018-0030

Keywords:

Portfolio selection, utility maximization criteria, higher moments, high frequency data

Abstract

This paper analyzes empirically the performance gains of using high frequency data in portfolio selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis frameworks. Using data on fourteen stocks of the Euronext Paris, from January 1999 to December 2005, we conclude that the high frequency portfolios outperform the low frequency portfolios for every out-of-sample measure, irrespectively to the relative risk aversion coefficient considered. The empirical results also suggest that for moderate relative risk aversion the best performance is always achieved through the jointly use of the realized variance, skewness and kurtosis. This claim is reinforced when trading costs are taken into account.

JEL Codes - C55; C61; G11

References

Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A., 2015. Does Realized Skewness Predict the Cross-Section of Equity Returns? Journal of Financial Economics, 118(1), 135-167. http://dx.doi.org/10.1016/j.jfineco.2015.02.00

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H., 2001. The Distribution of Realized Stock Return Volatility. Journal of Financial Economics, 61(1), 43-76. http://dx.doi.org/10.1016/s0304-405x(01)00055-1

Arditti, F. D., 1967. Risk and the Required Return On Equity. The Journal of Finance, 22(1), 19-36. http://dx.doi.org/10.1111/j.1540-6261.1967.tb01651.x

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N., 2011. Multivariate Realized Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading. Journal of Econometrics, 162(2), 149-169. http://dx.doi.org/10.1016/j.jeconom.2010.07.009

Barndorff-Nielsen, O. E., and Shephard, N., 2002. Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 253-280. http://dx.doi.org/10.1111/1467-9868.00336

Bliss, R., and Panigirzoglou, N., 2004. Option-Implied Risk Aversion Estimates. The Journal of Finance, 59(1), 407-446. http://dx.doi.org/10.1111/j.1540-6261.2004.00637.x

Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307-327. http://dx.doi.org/10.1016/0304-4076(86)90063-1

Brandt, M. W., Santa-Clara, P., and Valkanov, R., 2009. Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns. Review of Financial Studies, 22(9), 3411-3447. http://dx.doi.org/10.1093/rfs/hhp003

Brito, R. P., Sebastião, H., and Godinho, P., 2017a. Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect. Portuguese Economic Journal, 16(2), 65-86. http://dx.doi.org/10.1007/s10258-017-0131-3

Brito, R. P., Sebastião, H., and Godinho, P., 2017b. Portfolio Management with Higher Moments: The Cardinality Impact. International Transactions in Operational Research. http://dx.doi.org/10.1111/itor.12404

Campbell, J. Y., Lo, A. W., and MacKinlay, A. G., 1997. The Econometrics of Financial Markets. Chichester: Princeton University Press.

de Athayde, G., and Flores, R., 2004. Finding a Maximum Skewness Portfolio: A General Solution to Three-Moments Portfolio Choice. Journal of Economic Dynamics & Control, 28(7), 1335-1352. http://dx.doi.org/10.1016/s0165-1889(02)00084-2

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R., 2009a. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Management Science, 55(5), 798-812. http://dx.doi.org/10.1287/mnsc.1080.0986

DeMiguel, V., Garlappi, L., and Uppal, R., 2009b. Optimal Versus Naive Diversification: How Inefficient Is The 1/N Portfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. http://dx.doi.org/10.1093/rfs/hhm075

Dittmar, R., 2002. Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns. The Journal of Finance, 57(1), 369-403. http://dx.doi.org/10.1111/1540-6261.00425

Engle, R. F., 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. http://dx.doi.org/10.2307/1912773

Fleming, J., Kirby, C., and Ostdiek, B., 2003. The Economic Value of Volatility Timing Using "Realized" Volatility. Journal of Financial Economics, 67(3), 473-509. http://dx.doi.org/10.1016/s0304-405x(02)00259-3

Harvey, C. R., Liechty, J., Liechty, M. W., and Müller, P., 2010. Portfolio Selection with Higher Moments. Quantitative Finance, 10(5), 469-485. http://dx.doi.org/10.1080/14697681003756877

Israelsen, C. L., 2005. A Refinement to the Sharpe Ratio and Information Ratio. Journal of Asset Management, 5(6), 423-427. http://dx.doi.org/10.1057/palgrave.jam.2240158

Kelly, J., 1956. A New Interpretation of Information Rate. The Bell System Technical Journal, 35(4), 917-926. http://dx.doi.org/10.1002/j.1538-7305.1956.tb03809.x

Kimball, M., 1993. Standard Risk Aversion. Econometrica, 61(3), 589-611. http://dx.doi.org/10.2307/2951719

Ledoit, O., and Wolf, M., 2008. Robust Performance Hypothesis Testing with the Sharpe Ratio. Journal of Empirical Finance, 15(5), 850-859. http://dx.doi.org/10.1016/j.jempfin.2008.03.002

Liu, Q., 2009. On Portfolio Optimization: How and When Do We Benefit From High-Frequency Data? Journal of Applied Econometrics, 24(4), 560-582. http://dx.doi.org/10.1002/jae.1062

Mandelbrot, B., 1963. The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394-419. http://dx.doi.org/10.1086/294632

Maringer, D., and Parpas, P., 2009. Global Optimization of Higher Order Moments in Portfolio Selection. Journal of Global Optimization, 43(2/3), 219-230. http://dx.doi.org/10.1007/s10898-007-9224-3

Markowitz, H. M., 1952. Portfolio Selection. The Journal of Finance, 7(1), 77-91. http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x

Martellini, L., and Ziemann, V., 2010. Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection. Review of Financial Studies, 23(4), 1467-1502. http://dx.doi.org/10.1093/rfs/hhp099

Merton, R. C., 1980. On Estimating the Expected Return On the Market: An Explanatory Investigation. Journal of Financial Economics, 8(4), 323-361. http://dx.doi.org/10.1016/0304-405X(80)90007-0

Nelson, D. B., 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370. http://dx.doi.org/10.2307/2938260

Neuberger, A., 2012. Realized Skewness. Review of Financial Studies, 25(11), 3423-3455. http://dx.doi.org/10.1093/rfs/hhs101

Taylor, S. J., 1986. Modelling Financial Time Series. Chichester, UK: Wiley.

Downloads

Published

2018-12-15

How to Cite

Brito, R. P., Sebastião, H., & Godinho, P. (2018). On the Gains of Using High Frequency Data in Portfolio Selection. Scientific Annals of Economics and Business, 65(4), 365–383. https://doi.org/10.2478/saeb-2018-0030

Issue

Section

Articles