On the Gains of Using High Frequency Data in Portfolio Selection
DOI:
https://doi.org/10.2478/saeb-2018-0030Keywords:
Portfolio selection, utility maximization criteria, higher moments, high frequency dataAbstract
This paper analyzes empirically the performance gains of using high frequency data in portfolio selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis frameworks. Using data on fourteen stocks of the Euronext Paris, from January 1999 to December 2005, we conclude that the high frequency portfolios outperform the low frequency portfolios for every out-of-sample measure, irrespectively to the relative risk aversion coefficient considered. The empirical results also suggest that for moderate relative risk aversion the best performance is always achieved through the jointly use of the realized variance, skewness and kurtosis. This claim is reinforced when trading costs are taken into account.
JEL Codes - C55; C61; G11References
Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A., 2015. Does Realized Skewness Predict the Cross-Section of Equity Returns? Journal of Financial Economics, 118(1), 135-167. http://dx.doi.org/10.1016/j.jfineco.2015.02.00
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H., 2001. The Distribution of Realized Stock Return Volatility. Journal of Financial Economics, 61(1), 43-76. http://dx.doi.org/10.1016/s0304-405x(01)00055-1
Arditti, F. D., 1967. Risk and the Required Return On Equity. The Journal of Finance, 22(1), 19-36. http://dx.doi.org/10.1111/j.1540-6261.1967.tb01651.x
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N., 2011. Multivariate Realized Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading. Journal of Econometrics, 162(2), 149-169. http://dx.doi.org/10.1016/j.jeconom.2010.07.009
Barndorff-Nielsen, O. E., and Shephard, N., 2002. Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 253-280. http://dx.doi.org/10.1111/1467-9868.00336
Bliss, R., and Panigirzoglou, N., 2004. Option-Implied Risk Aversion Estimates. The Journal of Finance, 59(1), 407-446. http://dx.doi.org/10.1111/j.1540-6261.2004.00637.x
Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307-327. http://dx.doi.org/10.1016/0304-4076(86)90063-1
Brandt, M. W., Santa-Clara, P., and Valkanov, R., 2009. Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns. Review of Financial Studies, 22(9), 3411-3447. http://dx.doi.org/10.1093/rfs/hhp003
Brito, R. P., Sebastião, H., and Godinho, P., 2017a. Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect. Portuguese Economic Journal, 16(2), 65-86. http://dx.doi.org/10.1007/s10258-017-0131-3
Brito, R. P., Sebastião, H., and Godinho, P., 2017b. Portfolio Management with Higher Moments: The Cardinality Impact. International Transactions in Operational Research. http://dx.doi.org/10.1111/itor.12404
Campbell, J. Y., Lo, A. W., and MacKinlay, A. G., 1997. The Econometrics of Financial Markets. Chichester: Princeton University Press.
de Athayde, G., and Flores, R., 2004. Finding a Maximum Skewness Portfolio: A General Solution to Three-Moments Portfolio Choice. Journal of Economic Dynamics & Control, 28(7), 1335-1352. http://dx.doi.org/10.1016/s0165-1889(02)00084-2
DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R., 2009a. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Management Science, 55(5), 798-812. http://dx.doi.org/10.1287/mnsc.1080.0986
DeMiguel, V., Garlappi, L., and Uppal, R., 2009b. Optimal Versus Naive Diversification: How Inefficient Is The 1/N Portfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. http://dx.doi.org/10.1093/rfs/hhm075
Dittmar, R., 2002. Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns. The Journal of Finance, 57(1), 369-403. http://dx.doi.org/10.1111/1540-6261.00425
Engle, R. F., 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. http://dx.doi.org/10.2307/1912773
Fleming, J., Kirby, C., and Ostdiek, B., 2003. The Economic Value of Volatility Timing Using "Realized" Volatility. Journal of Financial Economics, 67(3), 473-509. http://dx.doi.org/10.1016/s0304-405x(02)00259-3
Harvey, C. R., Liechty, J., Liechty, M. W., and Müller, P., 2010. Portfolio Selection with Higher Moments. Quantitative Finance, 10(5), 469-485. http://dx.doi.org/10.1080/14697681003756877
Israelsen, C. L., 2005. A Refinement to the Sharpe Ratio and Information Ratio. Journal of Asset Management, 5(6), 423-427. http://dx.doi.org/10.1057/palgrave.jam.2240158
Kelly, J., 1956. A New Interpretation of Information Rate. The Bell System Technical Journal, 35(4), 917-926. http://dx.doi.org/10.1002/j.1538-7305.1956.tb03809.x
Kimball, M., 1993. Standard Risk Aversion. Econometrica, 61(3), 589-611. http://dx.doi.org/10.2307/2951719
Ledoit, O., and Wolf, M., 2008. Robust Performance Hypothesis Testing with the Sharpe Ratio. Journal of Empirical Finance, 15(5), 850-859. http://dx.doi.org/10.1016/j.jempfin.2008.03.002
Liu, Q., 2009. On Portfolio Optimization: How and When Do We Benefit From High-Frequency Data? Journal of Applied Econometrics, 24(4), 560-582. http://dx.doi.org/10.1002/jae.1062
Mandelbrot, B., 1963. The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394-419. http://dx.doi.org/10.1086/294632
Maringer, D., and Parpas, P., 2009. Global Optimization of Higher Order Moments in Portfolio Selection. Journal of Global Optimization, 43(2/3), 219-230. http://dx.doi.org/10.1007/s10898-007-9224-3
Markowitz, H. M., 1952. Portfolio Selection. The Journal of Finance, 7(1), 77-91. http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x
Martellini, L., and Ziemann, V., 2010. Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection. Review of Financial Studies, 23(4), 1467-1502. http://dx.doi.org/10.1093/rfs/hhp099
Merton, R. C., 1980. On Estimating the Expected Return On the Market: An Explanatory Investigation. Journal of Financial Economics, 8(4), 323-361. http://dx.doi.org/10.1016/0304-405X(80)90007-0
Nelson, D. B., 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370. http://dx.doi.org/10.2307/2938260
Neuberger, A., 2012. Realized Skewness. Review of Financial Studies, 25(11), 3423-3455. http://dx.doi.org/10.1093/rfs/hhs101
Taylor, S. J., 1986. Modelling Financial Time Series. Chichester, UK: Wiley.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 SCIENTIFIC ANNALS OF ECONOMICS AND BUSINESS
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All accepted papers are published on an Open Access basis.
The Open Access License is based on the Creative Commons license.
The non-commercial use of the article will be governed by the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License as currently displayed on https://creativecommons.org/licenses/by-nc-nd/4.0
Under the Creative Commons Attribution-NonCommercial-NoDerivatives license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions:
1. they must attribute the contribution in the manner specified by the author or licensor,
2. they may not use this contribution for commercial purposes,
3. they may not alter, transform, or build upon this work.