Volatility and Return Connectedness Between the Oil Market and Eurozone Sectors During the Financial Crisis: A TVP-VAR Frequency Connectedness Approach

Authors

  • Lamia Sebai Higher Institute of Management, University of Gabès, Tunisia, RED-Lab
  • Yasmina Jaber Higher Institute of Management, University of Gabès, Tunisia, RED-Lab
  • Foued Hamouda Higher Institute of Management of Gabès, Higher Institute of Management of Tunis GEF2A-Lab, Le Bardo 2000

DOI:

https://doi.org/10.47743/saeb-2024-0014

Keywords:

oil market, Eurozone Super sectors, TVP-VAR frequency connectedness, volatility transmission, volatility spillovers.

Abstract

This paper analyzes the returns and volatility connectedness between oil prices and Eurozone sector returns during the global financial crisis. We employ the TVP-VAR frequency connectedness approach with daily data of Brent prices and 18 Eurozone supersector indices from 15 November 2014 to 24 November 2023. Our results show a high average connectedness of the returns and volatilities. Industrial Goods are the largest transmitter contrariwise Media supersector is the largest receiver of shocks on returns. The same finding is for volatility, the result shows that Industrial Goods and Services transmit the highest risk in contrast, the Media has the highest receiver volatility indices. The time-varying connectedness (TCI) of returns and volatilities in both show a drastic increase in March 2020. This increase is a result of COVID-19. Whereas, there has been no rise in connectivity following Russia’s invasion of Ukraine. Our result highlighted that Brent was a net receiver of volatility shocks during the Russian invasion of Ukraine.

References

Adekoya, O. B., & Oliyide, J. A. (2021). How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques. Resources Policy, 70(Mar), 101898. http://dx.doi.org/10.1016/j.resourpol.2020.101898

Ahmad, W., Hernandez, J., A., Saini, S., & Mishra, K., R. (2021). What does the spillover analysis reveal about the US equity sectors, implied volatilities, and COVID-19? . Resources Policy, 72(august). http://dx.doi.org/10.1016/j.resourpol.2021.102102

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial Management, 13(84), 1-23. http://dx.doi.org/10.3390/jrfm13040084

Aslan, A., & Posch, P. N. (2022). Does carbon price volatility affect European stock market sectors? A connectedness network analysis. Finance Research Letters, 50, 103318. http://dx.doi.org/10.1016/j.frl.2022.103318

Balcilar, M., David, G., & Zaghum, U. (2021). Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resources Policy, 73(October ), 102219. http://dx.doi.org/10.1016/j.resourpol.2021.10221

Barunik, J., & Ellington, M. (2020). Dynamic Network Risk. Electronic copy. http://dx.doi.org/10.2139/ssrn.3622200

Cai, Y., Zhang, D., Chang, T., & Lee, C. C. (2022). Macroeconomic outcomes of OPEC and non-OPEC oil supply shocks in the euro area. Energy Economics, 109, 105975. http://dx.doi.org/10.1016/j.eneco.2022.105975

Cevik, N. K., Cevik, E. I., & Dibooglu, S. (2020). Oil prices, stock market returns and, volatility spillovers: Evidence from Turkey. Journal of Policy Modeling, 42, 597-614. http://dx.doi.org/10.1016/j.jpolmod.2020.01.006

Diebold, F., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134. http://dx.doi.org/10.1016/j.jeconom.2014.04.012

Farid, S., Naeem, M. A., Paltrinieri, A., & Nepal, R. (2022). Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities. Energy Economics, 109, 105962. http://dx.doi.org/10.1016/j.eneco.2022.105962

Gong, X., & Xu, J. (2022). Geopolitical risk and dynamic connectedness between commodity markets. Energy Economics, 110(1), 106028. http://dx.doi.org/10.1016/j.eneco.2022.106028

He, F., Ma, F., Wang, Z., & Yang, B. (2021). Asymmetric volatility spillover between oil-importing and oil-exporting countries’ economic policy uncertainty and China’s energy sector. International Review of Financial Analysis, 75(May), 101739. http://dx.doi.org/10.1016/j.irfa.2021.101739

Hernandez, J. A., Shahzad, S. J. H., Sadorsky, P., Uddin, G. S., Bouri, G., & Kang, S. H. (2022). Regime-specific spillovers across US sectors and the role of oil price volatility. Energy Economics, 107(March), 105834. http://dx.doi.org/10.1016/j.eneco.2022.105834

Huang, J., Chen, B., Xu, Y., & Xia, X. (2023). Time-frequency volatility transmission among energy commodities and financial markets during the COVID-19 pandemic: A Novel TVP-VAR frequency connectedness approach. Finance Research Letters, 53(May), 103634. http://dx.doi.org/10.1016/j.frl.2023.103634

Koop, G., & Korobilis, D. (2014). A new index of financial conditions. European Economic Review, 71(1), 101-116. http://dx.doi.org/10.1016/j.euroecorev.2014.07.002

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147. http://dx.doi.org/10.1016/0304-4076(95)01753-4

Le, T. H., & Luong, A. T. (2022). Dynamic spillovers between oil price, stock market, and investor sentiment: Evidence from the United States and Vietnam. Resources Policy, 78, 102931. http://dx.doi.org/10.1016/j.resourpol.2022.102931

Li, J., Zhang, Y., & Wang, L. (2021). Information transmission between large shareholders and stock volatility. The North American Journal of Economics and Finance, 58(November), 101551. http://dx.doi.org/10.1016/j.najef.2021.101551

Liu, B. Y., Fan, Y., Ji, Q., & Hussain, N. (2022). High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system. Energy Economics, 105(1), 105749. http://dx.doi.org/10.1016/j.eneco.2021.105749

Lorusso, M., & Pieroni, L. (2018). Causes and consequences of oil price shocks on the UK economy. Economic Modelling, 72(2), 223-236. http://dx.doi.org/10.1016/j.econmod.2018.01.018

Mensi, W., Al Kharusi, S., Vo, X. V., & Kang, S. H. (2022). Frequency connectedness and spillovers among oil and Islamic sector stock markets: Portfolio hedging implications. Borsa Istanbul Review, 22(6), 1098-1117. http://dx.doi.org/10.1016/j.bir.2022.07.008

Pesaran, H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29. http://dx.doi.org/10.1016/S0165-1765(97)00214-0

Shah, A. A., Paul, M., Bhanja, N., & Dar, A. B. (2021). Dynamics of connectedness across crude oil, precious metals, and exchange rate: Evidence from time and frequency domains. Resources Policy, 73(October), 102154. http://dx.doi.org/10.1016/j.resourpol.2021.102154

Sokhanvara, A., & Bouri, E. (2022). Commodity price shocks related to the war in Ukraine and exchange rates of commodity exporters and importers. Borsa Istanbul Review, 23(1), 44-54. http://dx.doi.org/10.1016/j.bir.2022.09.001

Tiwari, A. K., Jena, S. K., Mitra, A., & Yoon, S. M. (2018). Impact of oil price risk on sectoral equity markets: Implications on portfolio management. Energy Economics, 72(May), 120-134. http://dx.doi.org/10.1016/j.eneco.2018.03.031

Udeaja, E. A. (2019). Measuring Dynamic Return and Volatility Connectedness among Nigerian Financial Markets. CBN Journal of Applied Statistics, 10(2), 169-191. http://dx.doi.org/10.33429/Cjas.10219.6/6

Umar, Z., Polat, O., Choi, S. Y., & Teplova, T. (2022). The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Finance Research Letters, 48(August), 102976. http://dx.doi.org/10.1016/j.frl.2022.102976

Urom, C., Ndubuisi, G., & Guesmi, K. (2022). Dynamic dependence and predictability between volume and return of Non-Fungible Tokens (NFTs): The roles of market factors and geopolitical risks. Finance Research Letters, 50(December), 103188. http://dx.doi.org/10.1016/j.frl.2022.103188

Yuan, D., Li, S., Li, R., & Zhang, F. (2022). Economic policy uncertainty, oil and stock markets in BRIC: Evidence from quantiles analysis. Energy Economics, 110(June), 105972. http://dx.doi.org/10.1016/j.eneco.2022.105972

Zhang, C., Mou, X. Y. S., & Ye, S. (2022). How do dynamic jumps in global crude oil prices impact China’s industrial sector? Energy, 249(June), 123605. http://dx.doi.org/10.1016/j.energy.2022.123605

Downloads

Published

2024-06-24

How to Cite

Sebai, L., Jaber, Y., & Hamouda, F. . (2024). Volatility and Return Connectedness Between the Oil Market and Eurozone Sectors During the Financial Crisis: A TVP-VAR Frequency Connectedness Approach. Scientific Annals of Economics and Business, 71(2), 301–314. https://doi.org/10.47743/saeb-2024-0014

Issue

Section

Articles