The Effectiveness of the Huber's Weight on Dispersion and Tuning Constant: A Simulation Study
DOI:
https://doi.org/10.47743/saeb-2023-0022Keywords:
dispersion, tuning constant, Huber, generalized autoregressive conditional heteroscedasticity, additive outliersAbstract
Dispersion measurement and tuning constants are critical aspects of a model's robustness and efficiency. However, in the presence of outliers, the standard deviation is not a reliable measure of dispersion in Huber's weight. This research aimed to assess the efficacy of the Huber weight function in terms of dispersion measurement and tuning constant. The simulation study was conducted on a hybrid of the autoregressive (AR) model and the generalized autoregressive conditional heteroscedasticity (GARCH) model with 10% and 20% additive outlier contamination. In the simulation analysis, three dispersion measurements were compared: median absolute deviation (MAD), interquartile range (IQR), and IQR/3, with two tuning constant values (1.345 and 1.5). The numerical simulation results showed that during contamination with 10% and 20% additive outliers, the IQR/3 outperformed the MAD and IQR. Our findings also showed that IQR/3 is a potentially more robust dispersion measurement in Huber's weight. The tuning constant of 1.5 revealed a decrease in resistance to outliers and increased efficiency. The proposed IQR/3 model with a constant tuning value (h) of 1.5 outperformed the AR(1)-GARCH(1,2) model while minimising the effect of additive outliers.
References
Balke, N. S., & Fomby, T. B. (1994). Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series. Journal of Applied Econometrics, 9(2), 181-200. http://dx.doi.org/10.1002/jae.3950090205
Barrow, D., Kourentzes, N., Sandberg, R., & Niklewski, J. (2020). Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications, 160(1 December), 113637. http://dx.doi.org/10.1016/j.eswa.2020.113637
Basu, S., & Meckesheimer, M. (2007). Automatic outlier detection for time series: An application to sensor data. Knowledge and Information Systems, 11(2), 137-154. http://dx.doi.org/10.1007/s10115-006-0026-6
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. http://dx.doi.org/10.1016/0304-4076(86)90063-1
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: Forecasting and Control (5th ed. ed.): John Wiley and Sons.
Cantoni, E., & Ronchetti, E. (2001). Robust inference for generalized linear models. Journal of the American Statistical Association, 96(455), 1022-1030. http://dx.doi.org/10.1198/016214501753209004
Carnero, M. A., Peña, D., & Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters, 114(1), 86-90. http://dx.doi.org/10.1016/j.econlet.2011.09.023
Caroni, C., & Karioti, V. (2004). Detecting an innovative outlier in a set of time series. Computational Statistics & Data Analysis, 46(3), 561-570. http://dx.doi.org/10.1016/j.csda.2003.09.004
Chan, W. S. (1992). A note on time series model specification in the presence of outliers. Journal of Applied Statistics, 19(1), 117-124. http://dx.doi.org/10.1080/02664769200000010
Chang, I., Tiao, G. C., & Chen, C. (1988). Estimation of time series parameters in the presence of outliers. Technometrics, 30(2), 193-204. http://dx.doi.org/10.1080/00401706.1988.10488367
Charles, A. (2008). Forecasting volatility with outliers in GARCH models. Journal of Forecasting, 27(7), 551-565. http://dx.doi.org/10.1002/for.1065
Chen, C., & Liu, L. M. (1993a). Forecasting time series with outliers. Journal of Forecasting, 12(1), 13-35. http://dx.doi.org/10.1002/for.3980120103
Chen, C., & Liu, L. M. (1993b). Joint Estimation of Model Parameters and Outlier Effects in Time Series. Journal of the American Statistical Association, 88(421), 284-297. http://dx.doi.org/10.2307/2290724
Chi, E. M. (1994). M-estimation in cross-over trials. Biometrics, 50(2), 486-493. http://dx.doi.org/10.2307/2533390
Cummins, D. J., & Andrews, C. W. (1995). Iteratively reweighted partial least squares: A performance analysis by Monte Carlo simulation. Journal of Chemometrics, 9(6), 489-507. http://dx.doi.org/10.1002/cem.1180090607
Dehnel, G. (2016). M-estimators in business statistics. Statistics in Transition, 17(4), 749-762. http://dx.doi.org/10.21307/stattrans-2016-050
Edgeworth, F. Y. (1887). On observations relating to several quantities. Hermathena, 6(13), 279-285.
Elsaied, H., & Fried, R. (2016). Tukey’s M-estimator of the Poisson parameter with a special focus on small means. Statistical Methods & Applications, 25(May), 191-209. http://dx.doi.org/10.1007/s10260-015-0295-x
Erdoğan, H. (2012). The effects of additive outliers on time series components and robust estimation: A case study on the Oymapinar Dam, Turkey. Experimental Techniques, 36(3), 39-52. http://dx.doi.org/10.1111/j.1747-1567.2010.00676.x
Ertaş, H. (2018). A modified ridge M-estimator for linear regression model with multicollinearity and outliers. Communications in Statistics. Simulation and Computation, 47(4), 1240-1250. http://dx.doi.org/10.1080/03610918.2017.1310231
Fan, J., Wang, W., & Zhong, Y. (2019). Robust covariance estimation for approximate factor models. Journal of Econometrics, 208(1), 5-22. http://dx.doi.org/10.1016/j.jeconom.2018.09.003
Franses, P. H., & Van Dijk, D. (2000). Non-linear time series models in empirical finance: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511754067
Gajowniczek, K., & Zabkowski, T. (2017). Two-stage electricity demand modeling using machine learning algorithms. Energies, 10(10), 1547. http://dx.doi.org/10.3390/en10101547
Ghani, I. M., & Rahim, H. A. (2018). Modeling and Forecasting of Volatility using ARMA-GARCH : Case Study on Malaysia Natural Rubber Prices. 2018: Nspm.
Ghazali, Z. M., Halim, M. S. A., & Jamidin, J. N. (2017). The performance comparison of two-step robust weighted least squares (TSRWLS) with different robust’s weight functions. International Journal of Advanced and Applied Sciences, 4(5), 44-47. http://dx.doi.org/10.21833/ijaas.2017.05.008
Grané, A., & Veiga, H. (2010). Wavelet-based detection of outliers in financial time series. Computational Statistics & Data Analysis, 54(11), 2580-2593. http://dx.doi.org/10.1016/j.csda.2009.12.010
Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical Association, 69(346), 383-393. http://dx.doi.org/10.1080/01621459.1974.10482962
Hedayat, S., & Su, G. (2012). Robustness of the simultaneous estimators of location and scale from approximating a histogram by a normal density curve. The American Statistician, 66(1), 25-33. http://dx.doi.org/10.1080/00031305.2012.663665
Hillmer, S. (1984). Monitoring and adjusting forecasts in the presence of additive outliers. Journal of Forecasting, 3(2), 205-215. http://dx.doi.org/10.1002/for.3980030208
Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics. Theory and Methods, 6(9), 813-827. http://dx.doi.org/10.1080/03610927708827533
Hotta, L. K., & Tsay, R. S. (2012). Outliers in GARCH Processes Economic time series: modeling and seasonality. http://dx.doi.org/10.1201/b11823-20
Huber, P. J. (1964). Robust Estimation of a Location Parameter. Annals of Mathematical Statistics, 35(1), 73-101. http://dx.doi.org/10.1214/aoms/1177703732
Huber, P. J. (1981). Robust statistics: John Wiley & Sons, Inc. http://dx.doi.org/10.1002/0471725250
Jaeckel, L. A. (1972). Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals. Annals of Mathematical Statistics, 43(5), 1449-1458. http://dx.doi.org/10.1214/aoms/1177692377
Kamranfar, H., Chinipardaz, R., & Mansouri, B. (2017). Detecting outliers in GARCH (p, q) models. Communications in Statistics-Simulation and Computation, 46(10), 7844-7854. http://dx.doi.org/10.1080/03610918.2016.1255964
Lee, H. A., & Van Hui, Y. (1993). Outliers detection in time series. Journal of Statistical Computation and Simulation, 45(1–2), 77-95. http://dx.doi.org/10.1080/00949659308811473
Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764-766. http://dx.doi.org/10.1016/j.jesp.2013.03.013
Li, Q., Chen, H., & Zhu, F. (2021). Robust Estimation for Poisson Integer-Valued GARCH Models Using a New Hybrid Loss. Journal of Systems Science and Complexity, 34(4), 1578-1596. http://dx.doi.org/10.1007/s11424-020-9344-0
Mbamalu, G. A. N., El-Hawary, M. E., & El-Hawary, F. (1995). NOx emission modelling using the iteratively reweighted least-square procedures. International Journal of Electrical Power & Energy Systems, 17(2), 129-136. http://dx.doi.org/10.1016/0142-0615(95)91409-D
Muler, N., & Yohai, V. J. (2008). Robust estimates for GARCH models. Journal of Statistical Planning and Inference, 138(10), 2918-2940. http://dx.doi.org/10.1016/j.jspi.2007.11.003
Osada, E., Borkowski, A., Sośnica, K., Kurpiński, G., Oleksy, M., & Seta, M. (2018). Robust fitting of a precise planar network to unstable control points using M-estimation with a modified Huber function. Journal of Spatial Science, 63(1), 35-47. http://dx.doi.org/10.1080/14498596.2017.1311238
Park, C., & Cho, B. R. (2003). Development of robust design under contaminated and non-normal data. Quality Engineering, 15(3), 463-469. http://dx.doi.org/10.1081/QEN-120018045
Park, C., & Leeds, M. (2016). A highly efficient robust design under data contamination. Computers & Industrial Engineering, 93(March), 131-142. http://dx.doi.org/10.1016/j.cie.2015.11.016
Pell, R. J. (2000). Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemometrics and Intelligent Laboratory Systems, 52(1), 87-104. http://dx.doi.org/10.1016/S0169-7439(00)00082-4
Pennacchi, P. (2008). Robust estimate of excitations in mechanical systems using M-estimators-Theoretical background and numerical applications. Journal of Sound and Vibration, 310(4–5), 923-946. http://dx.doi.org/10.1016/j.jsv.2007.08.007
Polat, E. (2020). The effects of different weight functions on partial robust M-regression performance: A simulation study. Communications in Statistics. Simulation and Computation, 49(4), 1089-1104. http://dx.doi.org/10.1080/03610918.2019.1586926
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871-880. http://dx.doi.org/10.1080/01621459.1984.10477105
Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88(424), 1273-1283. http://dx.doi.org/10.1080/01621459.1993.10476408
Rousseeuw, P. J., & Yohai, V. (1984). Robust regression by means of S-estimators. In J. In Franke, W. Härdle, & D. Martin (Eds.), Robust and Nonlinear Time Series Analysis, Lecture Notes in Statistics (pp. 256-272): Springer. http://dx.doi.org/10.1007/978-1-4615-7821-5_15
Ruppert, D., & Matteson, D. S. (2015). Statistics and data analysis for financial engineering: with R examples: Spinger. https://doi.org/10.1007/978-1-4939-2614-5
Simpson, J. R., & Montgomery, D. C. (1998). The development and evaluation of alternative generalized M‐estimation techniques. Communications in Statistics. Simulation and Computation, 27(4), 999-1018. http://dx.doi.org/10.1080/03610919808813522
Street, J. O., Carroll, R. J., & Ruppert, D. (1988). A Note on Computing Robust Regression Estimates Via Iteratively Reweighted Least Squares. The American Statistician, 42(2), 152-154. http://dx.doi.org/10.1080/00031305.1988.10475548
Urooj, A., & Asghar, Z. (2017). Analysis of the performance of test statistics for detection of Outliers (Additive, Innovative, Transient and Level Shift) in AR (1) processes. Communications in Statistics. Simulation and Computation, 46(2), 948-979. http://dx.doi.org/10.1080/03610918.2014.985383
Wada, K. (2020). Outliers in official statistics. Japanese Journal of Statistics and Data Science, 3, 669-691. http://dx.doi.org/10.1007/s42081-020-00091-y
Wang, Y. G., Lin, X., Zhu, M., & Bai, Z. (2007). Robust estimation using the huber function with a data-dependent tuning constant. Journal of Computational and Graphical Statistics, 16(2), 468-481. http://dx.doi.org/10.1198/106186007X180156
Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklavoc, M. (2020). fGarch: Rmetrics-Autoregressive conditional heteroskedastic modelling [R package version 3042.83.1]. Retrieved from https://cran.r-project.org/package=fGarch
Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. Annals of Statistics, 15(2), 642-656. http://dx.doi.org/10.1214/aos/1176350366
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Intan Martina Md Ghani, Hanafi A Rahim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All accepted papers are published on an Open Access basis.
The Open Access License is based on the Creative Commons license.
The non-commercial use of the article will be governed by the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License as currently displayed on https://creativecommons.org/licenses/by-nc-nd/4.0
Under the Creative Commons Attribution-NonCommercial-NoDerivatives license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions:
1. they must attribute the contribution in the manner specified by the author or licensor,
2. they may not use this contribution for commercial purposes,
3. they may not alter, transform, or build upon this work.