
      

 

 

Scientific Annals of Economics and Business 

70 (2), 2023, 221-234 

DOI: 10.47743/saeb-2023-0022 
 

  

 

The Effectiveness of the Huber's Weight on Dispersion and Tuning Constant: 

A Simulation Study 

Intan Martina Md Ghani* , Hanafi A. Rahim**  

 

Abstract: Dispersion measurement and tuning constants are critical aspects of a model's robustness and 

efficiency. However, in the presence of outliers, the standard deviation is not a reliable measure of 

dispersion in Huber's weight. This research aimed to assess the efficacy of the Huber weight function in 

terms of dispersion measurement and tuning constant. The simulation study was conducted on a hybrid 

of the autoregressive (AR) model and the generalized autoregressive conditional heteroscedasticity 

(GARCH) model with 10% and 20% additive outlier contamination. In the simulation analysis, three 

dispersion measurements were compared: median absolute deviation (MAD), interquartile range (IQR), 

and IQR/3, with two tuning constant values (1.345 and 1.5). The numerical simulation results showed 

that during contamination with 10% and 20% additive outliers, the IQR/3 outperformed the MAD and 

IQR. Our findings also showed that IQR/3 is a potentially more robust dispersion measurement in 

Huber's weight. The tuning constant of 1.5 revealed a decrease in resistance to outliers and increased 

efficiency. The proposed IQR/3 model with a constant tuning value (h) of 1.5 outperformed the AR(1)-

GARCH(1,2) model while minimising the effect of additive outliers. 
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1. INTRODUCTION 

 

M-estimator is a common approach used in the robust method. It has been discovered that 

M-estimators are more computationally efficient, as described in the Barrow et al. (2020) study. 

The majority of researchers used M-estimator in a variety of fields, including finance and 

econometrics (Fan et al., 2019), geodesy and surveying (Osada et al., 2018), business survey 

(Dehnel, 2016), hydroelectric power (Erdoğan, 2012), mechanical systems (Pennacchi, 2008), 

infrared spectroscopic application (Pell, 2000) and biological experimentation (Elsaied & Fried, 

2016). Some researchers verified M-estimator via simulation experiment to improve their study 

(Erdoğan, 2012; Elsaied & Fried, 2016; Ghazali et al., 2017; Ertaş, 2018; Polat, 2020). There 

are several robust methods, such as least absolute deviation (LAD) (Edgeworth, 1887), M-

estimator (Huber, 1964), R-estimator (Jaeckel, 1972), least median of squares (LMS) 

(Rousseeuw, 1984), least trimmed squares (LTS) (Rousseeuw, 1984), S-estimator (Rousseeuw 

& Yohai, 1984), and MM-estimator (Yohai, 1987). Since they could provide some protection 

against outliers, both LAD-estimator and M-estimator are popular alternatives in the context of 

robust estimation of time series models (Barrow et al., 2020). However, M-estimator is preferred 

because it is simple and straightforward (Osada et al., 2018). Thus, many remarkable results had 

reported the M-estimator's potential, mainly Huber's function. 

Huber's M-estimator has three functions: objective, influence, and weight. The weight 

function is a fundamental component of a particular implementation of the M-estimation, 

reweighting observations affected by outliers throughout the iteration process (Osada et al., 

2018). The Huber's weight function has been widely investigated (Pell, 2000; Dehnel, 2016; 

Ghazali et al., 2017; Osada et al., 2018; Polat, 2020; Wada, 2020). Huber's weight function 

residual was typically standardised using mean and standard deviation as the central tendency 

and dispersion, respectively. In the presence of outliers, however, both measures are non-

robust (Hedayat & Su, 2012), have overestimated values (Dehnel, 2016), and are extremely 

sensitive to outliers (Park & Leeds, 2016). Furthermore, Hedayat and Su (2012) found that a 

wide range of tuning constant and dispersion measure options makes it challenging to try and 

convince people, particularly non-statisticians. Hence, there may be another robust dispersion 

measurement and tuning constant that can be considered to examine the effectiveness of the 

econometric model in the presence of outliers. 

Moreover, the model's effectiveness is related to its robustness and efficiency. The MAD 

is a measurement of robust dispersion. According to Rousseeuw and Croux (1993), the 

median and MAD are simple and easy to compute but extremely useful. Aside from MAD, 

the IQR was proposed as a robust dispersion in the simulation study by Park and Cho (2003). 

However, the literature review reveals that Huber's weight is dependent on the MAD as a 

dispersion measurement with the default tuning constant. Therefore, this research aimed to 

examine the efficiency of Huber weights while taking dispersion measurement and tuning 

constant into account. The AR and GARCH models were used to validate the robust 

dispersion measurement in the Huber weight function. Consequently, IQR/3 was proposed as 

an alternative to the robust dispersion measures (MAD and IQR). Finally, the efficiency of 

the Huber weight was then compared in terms of the proposed tuning constant value (1.5) 

versus the default tuning constant value (1.345). 

The sections that follow are divided into different sections. The AR (c), GARCH (m,n) 

model, M-estimator, tuning constant, and performance measurement are all briefly defined in 
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Section 2. Section 3 described the process in the simulation study in detail. Section 4 contains the 

results and discussion based on the simulation analysis, while Section 5 concludes the findings. 

 

2. MATERIALS AND METHODS 

 

This section addresses the hybrid of econometric models: AR and GARCH. The AR(c) 

can be expressed using notation as presented by Box et al. (2016): 

 

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 +⋯+ 𝛼𝑐𝑌𝑡−𝑐 + 𝜀𝑡 (1) 

with 𝛼0 represents a coefficient term, 𝛼𝑐 is the AR component coefficient of order 𝑐, and 𝜀𝑡 
is the white noise at time 𝑡. The 𝑐 order is non-negative integers.  

 

Let 𝑃𝑡 represent a random sample of size, 𝑇, with 𝑡 = 1,… , 𝑇. Considering the GARCH 

(𝑚, 𝑛) model developed by Bollerslev (1986), the equations can be written as follows: 

 

𝑟𝑡 = 𝑌𝑡 + 𝜀𝑡  (2) 

𝜀𝑡 = 𝜎𝑡𝑋𝑡 , 𝑋𝑡~𝑁(0,1)  (3) 

𝜎𝑡
2 = 𝜙0 + 𝜙1𝜎𝑡−1

2 +⋯+𝜙𝑚𝜎𝑡−𝑚
2 + 𝜑1𝜀𝑡−1

2 +⋯+ 𝜑𝑛𝜀𝑡−𝑛
2   (4) 

with 𝑟𝑡 is the return series (ln(𝑃𝑡 𝑃𝑡−1⁄ )), 𝑌𝑡 is a conditional mean, 𝜀𝑡 is a residual term at time 

𝑡, 𝑋𝑡 is the residual standardised, 𝜎𝑡
2 is the conditional variance at time 𝑡, 𝜙0 is the constant 

coefficient, 𝜎𝑡−1
2  is the previous variance currently predicted, and 𝜀𝑡−1

2  is the new details on 

volatility observed at the earlier moment under these conditions: 𝜙0 > 0, 𝜙1, … , 𝜙𝑚 ≥ 0, and 

𝜑1, … , 𝜑𝑛 ≥ 0. 

 

The additive outliers (AO) affect a single observation since only the 𝑇th observation 

period is affected (Chang et al., 1988; Chan, 1992; Chen & Liu, 1993a; Balke & Fomby, 

1994; Caroni & Karioti, 2004; Charles, 2008; Hotta & Tsay, 2012; Kamranfar et al., 2017; 

Urooj & Asghar, 2017). These outliers could be due to an error in documentation caused by 

other external factors such as human error or machine malfunction (Lee & Van Hui, 1993; 

Franses & Van Dijk, 2000; Basu & Meckesheimer, 2007; Urooj & Asghar, 2017). 

Additionally, the AO specifies an extraneous/exogenous corrective (Urooj & Asghar, 2017) 

and a gross error model (Hillmer, 1984; Chang et al., 1988). 

Through Eq. (4), the model GARCH (𝑚, 𝑛) can be written as an AR moving average for 

𝜀𝑡
2 as described by Bollerslev (1986): 

 

𝜀𝑡
2 = 𝜙0 +∑(𝜙𝑝 + 𝜑𝑝)𝜀𝑡−𝑝

2 + 𝛾𝑡 −∑𝜙𝑞𝛾𝑡−𝑞
2

𝑛

𝑞=1

𝑐

𝑝=1

 (5) 

with 𝑐 = 𝑚𝑎𝑥 {𝑚, 𝑛} and 𝛾𝑡 = 𝜀𝑡
2 − 𝜎𝑡

2; 𝑡 = 1,2, … , 𝑛, where 𝜀𝑡
2 is the outlier free time-series 

while 𝛾𝑡 is the outlier-free residuals. Next, Eq. (5) can be designed as: 

 

𝜀𝑡
2 =

𝜙0
1 − 𝜑(𝐷) − 𝜙(𝐷)

+
1 − 𝜙(𝐷)

1 − 𝜑(𝐷) − 𝜙(𝐷)
𝛾𝑡 =

𝜂

1 − 𝜑(𝐷) − 𝜙(𝐷)
+ 𝜂−1(𝐷)𝛾𝑡 (6) 

with 𝜑(𝐷) = ∑ 𝜑𝑞𝐷
𝑞 , 𝜙(𝐷) = ∑ 𝜙𝑝𝐷

𝑝𝑚
𝑝=1

𝑛
𝑞=1  and 𝜂(𝐷) =

1−𝜑𝑞(𝐷)−𝜙𝑝(𝐷)

1−𝜙𝑝(𝐷)
. 
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Once AO is apparent in the part of the GARCH model, the Equation could be 

transformed into Eq. (7), as shown by Chen and Liu (1993b). 

 

𝑒𝑡
2 = 𝜔IO𝜉AO(𝐷)𝐼𝑡(𝑇) + 𝜀𝑡

2 (7) 

 

From Eq. (7), it is possible to view this as a regression model for 𝜀𝑡
2 and to reform as: 

 

𝑒𝑡
2 = 𝜔AO𝑥𝑡 + 𝜀𝑡

2 (8) 

where: 

𝑒𝑡
2 is an observed series 𝜀𝑡

2, 

𝜔AO is the magnitude effect of AO, which is 𝜔AO(𝑇) = 𝜒𝑇 , 

𝜉AO(𝐷) is the dynamic pattern of AO effect, which is 𝜉AO(𝐷) = 1, 

𝐼𝑡(𝑇) is the predictor function that can clarify AO's impact as 𝐼𝑡(𝑇) = {
1 , 𝑡 = 𝑇
0 , otherwise

 

(𝑇 is the point where AO occurred). 

 

2.1 M-estimator 

 

Huber (1964) developed the M-estimator, a generalisation of the maximum likelihood 

estimator, as an alternative to minimising the objective function. 

 

min∑𝜌(𝜛𝑖)

𝑛

𝑖=1

 (9) 

 

From Eq. (9), 𝜛𝑖  is the 𝑖-th residual and 𝜌 is a symmetric function with a specific 

minimum value of zero. It is important to note that the residuals must be standardised. Let: 

 

𝜛𝑖 =
𝑥𝑖 − 𝑓(𝜇)

𝑔(𝜎)
 (10) 

where 𝑓(𝜇) is any central tendency measurement function, such as mean, median, or mode. 

Meanwhile, 𝑔(𝜎) is any dispersion measurement function, such as standard deviation, 

variance, MAD, range, or IQR. The following equations must be solved to simplify Eq. (9), 

 

∑𝜓(
𝑥𝑖 − 𝑓(𝜇)

𝑔(𝜎)
)

𝑛

𝑖=1

= 0 (11) 

∑𝜓(𝜛𝑖)

𝑛

𝑖=1

= 0 (12) 

whereby 𝜓(𝜛𝑖) is the influence function derived from the objective function's first derivative 

concerning residuals. 𝜓(𝜛𝑖) can be calculated using Eq. (13).  

 

𝜓(𝜛𝑖) =
𝜕𝜌(𝜛𝑖)

𝜕𝜛𝑖
 (13) 
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Next, the weight function is defined as: 

 

𝑤(𝜛𝑖) =
𝜓(𝜛𝑖)

𝜛𝑖
 (14) 

where 𝑤(𝜛𝑖) is the derivative of the 𝜓(𝜛𝑖). 
 

Now, we decided to minimise the Huber objective function, hence: 

 

𝜌(𝜛H) =

{
 

 
𝜛H
2

2
, for |𝜛H| ≤ ℎ

ℎ|𝜛H| −
(ℎ)2

2
, for |𝜛H| > ℎ

 (15) 

 

With the first derivative, the 𝜌(𝜛𝐻) becomes 𝜓(𝜛H), 
 

𝜓(𝜛H) = {
𝜛H , for |𝜛H| ≤ ℎ

ℎ(𝑠𝑔𝑛(𝜛H)) , for |𝜛H| > ℎ
 (16) 

 

From Eq. (16), the weight function can be expressed as: 

 

𝑤(𝜛H) = {

1 ,  for |𝜛H| ≤ ℎ
ℎ

|𝜛H|
,  for |𝜛H| > ℎ

 (17) 

where ℎ is a tuning constant with a value of 1.345 that produce 95% efficiency for normally 

distributed, 𝜀𝑡. 
 

2.2 The Robust Huber's Weight of Dispersion 

 

Since the outliers could affect the mean and standard deviation as the central tendency 

and dispersion, respectively, therefore, Hampel (1974) proposed the MAD as a more robust 

estimate than the sample standard deviation. Chen and Liu (1993b) also examined the MAD 

approach to achieve a better estimate and considered it an appropriate option (Simpson & 

Montgomery, 1998) and more robust dispersion (Leys et al., 2013; Ruppert & Matteson, 

2015). 

Therefore, from Eq. (17), the robust Huber's weight can be expressed in two ways: 

𝑤(𝜛MAD) and 𝑤(𝜛IQR). 

 

𝑤(𝜛MAD) = {

1 ,  for |𝜛MAD| ≤ ℎ
ℎ

|𝜛MAD|
,  for |𝜛MAD| > ℎ

 (18) 

with: 
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𝜛MAD =
𝑥𝑖 −median

MAD

0.6745

 (19) 

and: 

 

𝑤(𝜛IQR) = {

1 ,  for |𝜛IQR| ≤ ℎ

ℎ

|𝜛IQR|
,  for |𝜛IQR| > ℎ

 (20) 

with: 

 

𝜛IQR =
𝑥𝑖 −median

IQR
 (21) 

 

The ℎ value for the robust Huber's weight in Eq. (18) and Eq. (20) is 1.345, resulting in 

a 95% efficiency for normally distributed, 𝜀𝑡. 
 

2.3 The Proposed Huber's Weight of Dispersion 

 

Carnero et al. (2012) reported that even if the actual procedure for dealing with outliers 

comes after the estimate phase, outliers can be detected and corrected before the GARCH 

parameters are estimated. Subsequently, Eq. (10) is modified to: 

 

𝜛I =
𝑥𝑖 −median

IQR/3
 (22) 

where 𝜛I is the contamination data. 

 

Therefore, the proposed Huber's weight can be written as: 

 

𝑤(𝜛I) = {

1 ,  for |𝜛I| ≤ ℎ
ℎ

|𝜛I|
,  for |𝜛I| > ℎ

 (23) 

where proposed Huber's weight in Eq. (23) has a ℎ value of 1.5, resulting in 99.99% efficiency 

for normally distributed, 𝜀𝑡. 
 

2.4 Review of 𝒉 

 

The weighting function in M-estimator has ℎ that affects its robustness and efficiency 

(Holland & Welsch, 1977; Huber, 1981; Wang et al., 2007; Elsaied & Fried, 2016; 

Gajowniczek & Zabkowski, 2017; Li et al., 2021). A higher ℎ-value improves efficiency but 

reduces robustness to outliers, whereas a lower ℎ-value reduces efficiency but increases 

robustness to outliers (Elsaied & Fried, 2016; Li et al., 2021). Cummins and Andrews (1995) 

also observed that a higher value of ℎ reduces robustness to outliers, which is undesirable. 

However, it reduces the risk of penalising 'good' data, which is helpful. While decreasing the 

value of ℎ increases robustness to outliers, it also increases the risk of underweighting 'good' 

data, resulting in information loss. 
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Generally, the default value of ℎ for Huber weight is 1.345, which produce 95% 

efficiency for normally distributed. In their study, Cummins and Andrews (1995) reported 

that the default values of ℎ provided the best efficiency. Holland and Welsch (1977) and 

Simpson and Montgomery (1998) attempted to calculate the ℎ value in their studies. However, 

Huber (1981) suggested that the best Huber weight value was at ℎ = 1.5, which is between 1 

and 2. Therefore, some researchers had adjusted or modified the ℎ value to improve the 

performance of a specific weight function (Mbamalu et al., 1995). The various of Huber's ℎ 

values are summarized in Table no. 1. 

 
Table no. 1 – Adjusted 𝒉 value of Huber weight. 

Tuning constant value, 𝒉 Sources  

1.2 Cantoni and Ronchetti (2001)  

1.2107 Pennacchi (2008)  

1.25 Street et al. (1988); Chi (1994) 

1.5 Wang et al. (2007); Gajowniczek and Zabkowski (2017) 

 

2.5 Measure of Performance 

 

The performance of the dispersion measurement in Huber weight for AR(1)-

GARCH(1,2) model were compared using two goodness-of-fit measures, such as mean square 

error (MSE) and root mean square error (RMSE). 

 

MSE =
1

𝑇
∑(𝜎𝑡

2 − �̂�𝑡
2)2

𝑇

𝑡=𝑇1

 RMSE = √
1

𝑇
∑(𝜎𝑡

2 − �̂�𝑡
2)2

𝑇

𝑡=𝑇1

 

 

Based on the MSE and RMSE measures, 𝑇 is the total number of observations, 𝑇1 is the 

initial observation in the evaluation period, 𝜎𝑡
2 is the actual conditional variance at time 𝑡, and 

�̂�𝑡
2 is the predicted conditional variance at time 𝑡. A smaller MSE and RMSE under 

contamination are required for accurate dispersion measurement. 

 

3. A SIMULATION STUDY 

 

We designed simulations to examine the performance of the AR(1)-GARCH(1,2) model 

in the presence of AO by combining Huber weight function with the following factors:  

a) Percentage of AO contamination, PAO = {0%, 10%, 20%} 

b) Dispersion measurement: (MAD, IQR and IQR/3) 

c) Tuning constant, ℎ = {1.345, 1.5} 
One thousand simulation iterations of three-time series length, 𝑇 = {500,1000,5000} 

were generated using R Core Team (2020) software version 3.6.3. The AR(1)-GARCH(1,2) 

model was considered in the simulation study, which was adapted from Ghani and Rahim 

(2018) study. The motivation of selection percentages of AO contamination (PAO = 10% and 

20%) was also investigated by Muler and Yohai (2008) and Wang et al. (2007) in their 

research. Previously, researchers used 𝑇 = {500, 1000, 5000} during their simulation 
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processes (Grané & Veiga, 2010; Carnero et al., 2012). Therefore, the process of simulation 

studies was conducted as follows: 

1. The AR(1)-GARCH(1,2) model using the fGarch package (Wuertz et al., 2020) with 

parameter values were specified as:  
{𝛼0 = 0.043, 𝛼1 = − 0.312, 𝜙0 = 0.011, 𝜙1 = 0.913, 𝜑1 = 0.224, 𝜑2 = − 0.136}. 
2. Data were randomly simulated at the beginning of 𝑇 = 500 with a mean and standard 

deviation of 0 and 1, respectively. 

3. AO contamination was 10% of the series. The location of AO was identified by 

calculating the magnitude with 16𝜎. 

4. The Huber's weight was derived using three different dispersion measurements 

(MAD, IQR, and IQR/3) with ℎ = 1.345 based on the absolute 10% of AO contamination. 

5. The new data was obtained by applying Huber's weight. 

6. Steps (3) to (5) were repeated before increasing AO contamination to 20%. 

7. Coefficients of the AR(1)-GARCH(1,2) model for three situations were estimated 

using the garchFit function in Gaussian error distribution. 

8. The performance of the AR(1)-GARCH(1,2) model for three cases was evaluated. 

9. Steps (1) to (8) were repeated for different time series lengths, 𝑇 = 1000, 𝑇 =  5000. 

All-time series lengths were carried out using 1000 replications. 

10. Steps (1) to (9) were repeated by changing ℎ = 1.5. 

 

4. RESULTS AND DISCUSSIONS 

 

In this section, the performances of the AR(1)-GARCH(1,2) model using different 

dispersion measurements and ℎ in the Huber weight function will be discussed based on 

simulation study. 

 

4.1 Simulation Results 

 

This section will discuss how the proposed dispersion measurement outperformed the 

MAD and IQR presented by Park and Cho (2003) when using AO contamination of 10% and 

20% for 𝑇 = 500, 1000, 5000. Again, in this simulation, two concerns were addressed: 

dispersion measurement and ℎ. 

 

4.2 Dispersion Measurement 

 

Table no. 2 depicts the performance of non-Huber weight and dispersion measurements 

of 0%, 10%, and 20% AO contamination based on MSE. The MSE result for 𝑇 = 500 

reported a 54.4922 increase compared to 10% AO contamination (26.5450). IQR/3 reported 

a minimum MSE value of 0.3753 for 𝑇 = 500 during contaminated 10% AO, a drop of 98.6% 

when compared to the non-weighting value (26.5450). The results were followed by a 96.2% 

drop in MAD and a 95.1% drop in IQR. 

The MSE for the IQR/3 in the 20% contamination of AO reported a minimum value 

of 0.4306, followed by MAD and IQR, which were 1.2855 and 1.8402, respectively. 

Compared to the non-weighting measurements, all three-dispersion measurements 

decreased by 99.2%, 97.6%, and 96.6%, respectively (54.4922). A similar situation 

occurred when T=1000 and 5000. 
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Table no. 2 – MSE for non-Huber weight and dispersion measurement 

𝑻 PAO (%) NW MAD IQR IQR/3 ∆MAD ∆IQR ∆IQR/3 

500 0 0.91910       

 10 26.5450 0.9974 1.3061 0.3753 - 96.2 - 95.1 - 98.6 

 20 54.4922 1.2855 1.8402 0.4306 - 97.6 - 96.6 - 99.2 

1000 0 0.91910       

 10 23.5924 0.9612 1.2472 0.3346 - 95.9 - 94.7 - 98.6 

 20 52.9005 1.3382 1.8595 0.4390 - 97.5 - 96.5 - 99.2 

5000 0 1.00160       

 10 25.4275 1.0434 1.3575 0.3839 - 95.9 - 94.7 - 98.5 

 20 49.5896 1.4176 2.0162 0.4871 - 97.1 - 95.9 - 99.0 

Note:  𝑇 = time series length, PAO = percentage contamination of AO, NW = non-weighting, ∆MAD = 

percentage change of MAD, ∆IQR = percentage change of IQR, ∆IQR/3 = percentage change of IQR/3. 

 

Table no. 3 presents the performance of non-Huber weight and dispersion measurement 

with RMSEs of 0% (without contamination), 10%, and 20% AO contamination. The RMSE 

value for T=500 increased 43.3% during 20% AO contamination to 7.3819 compared to the 

10% AO contamination (5.1522). When T=500 and PAO = 10%, the RMSE values for MAD, 

IQR, and IQR/3 were 0.9987, 1.1429, and 0.6126, respectively. The IQR/3 had the greatest 

percentage reduction in RMSE at 88.1%, followed by MAD (80.6%) and IQR (77.8%). 

As PAO was increased to 20%, IQR/3 reported a minimum of RMSE of 0.6562, a drop 

of 91.1% when compared to the non-weighting (7.3819). The MAD and IQR, on the other 

hand, fell by 84.6% and 81.6%, respectively. When the time series length was increased to 

1000 and 5000, a similar situation occurred. 

 
Table no. 3 – RMSE for dispersion measurement in Huber weight. 

𝑻 PAO (%) NW MAD IQR IQR/3 ∆MAD ∆IQR ∆IQR/3 

500 0 0.9587       

 10 5.1522 0.9987 1.1429 0.6126 - 80.6 - 77.8 - 88.1 

 20 7.3819 1.1338 1.3566 0.6562 - 84.6 - 81.6 - 91.1 

1000 0 0.9587       

 10 4.8572 0.9804 1.1168 0.5785 - 79.8 - 77.0 - 88.1 

 20 7.2733 1.1568 1.3636 0.6626 - 84.1 - 81.3 - 90.9 

5000 0 1.0008       

 10 5.0426 1.0215 1.1651 0.6196 - 79.7 - 76.9 - 87.7 

 20 7.0420 1.1906 1.4199 0.6979 - 83.1 - 79.8 - 90.1 

Note:  𝑇 = time series length, PAO = percentage contamination of AO, NW = non-weighting, ∆MAD = 

percentage change of MAD, ∆IQR = percentage change of IQR, ∆IQR/3 = percentage change of IQR/3. 

 

The MAD results for the MSE and RMSE were more robust than the IQR at the PAO = 

10% and 20%. Tables no. 2 and no. 3 show that the percentage decrement for MAD is more 

significant than that for IQR. It has been reported that the MAD is an excellent choice for 

measuring dispersion (Rousseeuw & Croux, 1993; Simpson & Montgomery, 1998). This is 

supported by a study done by Park and Cho (2003), which discovered that MAD could be 

identified as a robust dispersion measurement under a normal distribution with contaminated 

data. However, our results showed that the IQR/3 outperformed the MAD and IQR during 

contamination with 10% and 20% AO. 
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4.3 Tuning Constant, 𝒉 

 

The performance of the three-dispersion measurement based on MSE between ℎ =
1.345 and ℎ = 1.5 is shown in Table no. 4. At T=500, PAO = 10%, and ℎ = 1.345, the IQR/3 

showed the lowest MSE value compared to MAD and IQR. The MSE value for IQR/3, MAD, 

and IQR was 0.3173, 0.8968, and 1.1878, respectively, decreased by 98.8%, 96.6%, and 

95.5% compared to the non-weighting value (26.5450) in Table no. 2. The MSE value for the 

three-dispersion measurement was lower when ℎ = 1.345 rather than ℎ = 1.5, as per this 

data. For PAO = 20%, ℎ = 1.345, the minimum MSE value was IQR/3, which had the highest 

percentage decrement of 99.3%, followed by MAD (97.9%) and IQR (97.0%). When the time 

series length was increased to 1000 and 5000, a similar situation occurred. 
 

Table no. 4 – MSE and percentage change (in parentheses) for dispersion measurement  

with 𝒉 = {𝟏. 𝟑𝟒𝟓, 𝟏. 𝟓} 

𝑻  PAO 
𝒉 = 𝟏. 𝟑𝟒𝟓  𝒉 = 𝟏. 𝟓  

MAD IQR IQR/3 MAD IQR IQR/3 

500 10% 
0.8968 

(- 96.6) 

1.1878 

(- 95.5) 

0.3173 

(- 98.8) 

0.9974 

(- 96.2) 

1.3061 

(- 95.1) 

0.3753 

(- 98.6) 

500 20% 
1.1212 

(- 97.9) 

1.6078 

(- 97.0) 

0.3641 

(- 99.3) 

1.2855 

(- 97.6) 

1.8402 

(- 96.6) 

0.4306 

(- 99.2) 

1000 10% 
0.8570 

(- 96.4) 

1.1326 

(- 95.2) 

0.2829 

(- 98.8) 

0.9612 

(- 95.9) 

1.2472 

(- 94.7) 

0.3346 

(- 98.6) 

1000 20% 
1.1751 

(- 97.8) 

1.6375 

(- 96.9) 

0.3711 

(- 99.3) 

1.3382 

(- 97.5) 

1.8595 

(- 96.5) 

0.4390 

(- 99.2) 

5000 10% 
0.9352 

(- 96.3) 

1.2375 

(- 95.1) 

0.3242 

(- 98.7) 

1.0434 

(- 95.9) 

1.3575 

(- 94.7) 

0.3839 

(- 98.5) 

5000 20% 
1.2467 

(- 97.5) 

1.7674 

(- 96.4) 

0.4113 

(- 99.2) 

1.4176 

(- 97.1) 

2.0162 

(- 95.9) 

0.4871 

(- 99.0) 

Note: 𝑇 = time series length, PAO = percentage contamination of AO, the values in parentheses represents 

the percentage change. 

 

Table no. 5 – RMSE and percentage change (in parentheses) for dispersion measurement  

with 𝒉 = {𝟏. 𝟑𝟒𝟓, 𝟏. 𝟓} 

𝑻  PAO 
𝒉 = 𝟏. 𝟑𝟒𝟓 𝒉 = 𝟏. 𝟓 

MAD IQR IQR/3 MAD IQR IQR/3 

500 10% 
0.9470 

(- 81.6) 

1.0899 

(- 78.8) 

0.5633 

(- 89.1) 

0.9987 

(- 80.6) 

1.1429 

(- 77.8) 

0.6126 

(- 88.1) 

500 20% 
1.0589 

(- 85.7) 

1.2680 

 (- 82.8) 

0.6034 

 (- 91.8) 

1.1338 

(- 84.6) 

1.3566 

(- 81.6) 

0.6562 

(- 91.1) 

1000 10% 
0.9257 

(- 80.9) 

1.0643 

(- 78.1) 

0.5319 

(- 89.1) 

0.9804 

(- 79.8) 

1.1168 

(- 77.0) 

0.5785 

(- 88.1) 

1000 20% 
1.0840 

(- 85.1) 

1.2796 

(- 82.4) 

0.6092 

(- 91.6) 

1.1568 

(- 84.1) 

1.3636 

(- 81.3) 

0.6626 

(- 90.9) 

5000 10% 
0.9671 

(- 80.8) 

1.1124 

 (- 77.9) 

0.5694 

 (- 88.7) 

1.0215 

(- 79.7) 

1.1651 

(76.9) 

0.6196 

(- 87.7) 

5000 20% 
1.1165 

(- 84.1) 

1.3294 

(- 81.1) 

0.6413 

(- 90.9) 

1.1906 

(- 83.1) 

1.4199 

(- 79.8) 

0.6979 

(- 90.1) 

Note: 𝑇 = time series length, PAO = percentage contamination of AO, the values in parentheses represents 

the percentage change. 
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Table no. 5 shows the RMSE performance of the three-dispersion measurement between 

ℎ = 1.345 and ℎ = 1.5. IQR/3 reported a minimum RMSE value of 0.5633 for 𝑇 = 500, PAO 

= 10%, and ℎ = 1.345, a drop of 89.1% compared to the non-weighting (5.1522). This was 

followed by a drop in MAD and IQR of 81.6% and 78.8%, respectively. At 𝑇 = 500, PAO = 

20%, and ℎ = 1.345, the MSE for the IQR/3 was 0.6034, followed by the MAD and IQR, 

which were 1.0589 and 1.2680, respectively. Compared to the non-weighting measurements, 

all three-dispersion measurements decreased by 91.8%, 85.75%, and 82.8%, respectively 

(7.3819). A similar situation occurred when 𝑇 = 1000 and 5000. 

This study found that as the proposed tuning constant (ℎ = 1.5) increased in comparison 

to the default (ℎ = 1.345), the MSE (in Table no. 4) and RMSE (in Table no. 5) for MAD, 

IQR, and IQR/3 also increased. The findings in Tables no. 4 and no. 5 proved that as the constant 

tuning increased, the amount of resistance to outliers decreased and efficiency increased 

(Cummins & Andrews, 1995; Elsaied & Fried, 2016). The current finding also supported 

Cummins and Andrews (1995) study, which found that increasing h is better since it reduces the 

risk of correcting "good" data. Our findings revealed that the IQR/3 outperformed MAD and 

IQR during AO contamination (PAO = 10%, 20%) with ℎ = {1.345, 1.5}. 
 

5. CONCLUSIONS 

 

This study aimed to examine and compare the efficiency of Huber weights by taking 

dispersion measurement and tuning constant into account. The following conclusions can be 

drawn from the computed results: 

1) The simulation results concluded that the proposed dispersion measurement IQR/3 

in the Huber weight function performed better than MAD and IQR during 10% and 20% AO 

contamination.  

2) The findings demonstrated that the IQR/3 becomes more robust as the percentage of 

AO contamination and time series length increase. 

3) ℎ = 1.5 outperformed the default value (ℎ = 1.345), resulting in less resistance to 

outliers and greater efficiency. 

The current study makes several contributions. First, we propose a method for detecting 

outliers before the estimation process. Second, the precision of IQR/3 as a dispersion measurement 

and the tuning constant (ℎ = 1.5) in the Huber weight function can help to reduce the effect of an 

additive outlier. Finally, the proposed Huber's dispersion weight is quick and straightforward to 

apply, making it an appealing tool for academic and/or practitioner communities 
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