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Abstract 

When the literature regarding applications of neural networks is investigated, it appears that a 

substantial issue is what size the training data should be when modelling a time series through neural 

networks. The aim of this paper is to determine the size of training data to be used to construct a 

forecasting model via a multiple-breakpoint test and compare its performance with two general 

methods, namely, using all available data and using just two years of data. Furthermore, the 

importance of the selection of the final neural network model is investigated in detail. The results 

obtained from daily crude oil prices indicate that the data from the last structural change lead to 

simpler architectures of neural networks and have an advantage in reaching more accurate forecasts in 

terms of MAE value. In addition, the statistical tests show that there is a statistically significant 

interaction between data size and stopping rule. 
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1. INTRODUCTION 

 

Oil is the most important commodity around the world and has a direct impact on the 

global economy. Yan (2012) claims that "Oil is one of the important strategic energy to 

guarantee the development of modern industry and economy, and is also an important 

resource, which is scrambled by each interest group in the world". A report of the 

International Energy Agency (IEA) in 2018 indicated that oil represents 35.3% of the 

world’s total primary energy supply, 37.3% of the world final energy consumption, of which 

68.6% is used for the transport sector. In addition, according to the World Bank report 2018, 

oil contributes from 2.8% to 3% of the world’s Gross Domestic Product (GDP) and more 
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than 15% of the world’s trade volume. As we know, there are several oil products; however, 

crude oil is of the greatest importance and plays a key role in the world economy. It is also 

of major importance as it can be refined to create various petroleum products such as diesel, 

fuel oil, gasoline, kerosene, etc. These derivative products are used in different vital sectors 

like transport, industry and commerce; also for everyday use, like heating oil. Thus, the 

crude oil price has a direct impact on all business sectors. Consequently, understanding 

crude oil market behaviour is a very important challenge. 

Since the first oil crisis in 1973, the oil market has been characterized by a high level 

of volatility. Indeed, several world events can explain the oil market instability, such as wars 

(the Iran–Iraq War in 1980, the invasion of Kuwait in 1990, and the invasion of Iraq in 

2003), revolutions (the Iranian revolution in 1979, and the Arab Spring since late 2010), 

crises (the Asian financial crisis in 1997, and the subprime crisis in 2008) and other 

unpredictable events related to weather conditions (extremely cold weather in the US and 

Europe during 1995 and early 2009), natural disasters (Hurricanes Katrina and Rita in 

2005), and other unforeseen crashes (terrorist attack on the US in 2001). All of these events 

are the factors that increase the volatility of oil prices and may result in structural changes 

on the series representing the conditions on the oil market. Therefore, researchers face very 

challenging difficulties when forecasting crude oil prices. Initial research in predicting oil 

prices was mainly based on traditional and statistical methods. These are various linear and 

non-linear parametric models, such as the Threshold Autoregressive (TAR) model, 

Exponential Autoregressive model, Bilinear model, Autoregressive Moving Averages 

(ARMA), Vector Autoregression (VAR), and General Autoregressive Conditional 

Heteroscedasticity (GARCH). 

However, the success of these model-based methods was limited to some specific areas 

due to the necessity of specifying the model form before the modelling process. Hence, soft-

computing techniques have emerged as the most appropriate tools to capture the nonlinear 

dynamics of oil prices. Among these methods, artificial neural networks (ANNs) have 

drawn the most attention because of their unique features (Cybenko, 1989; G. Zhang et al., 

1998). Briefly, it has no need to make any assumption about the functional form of the 

problem in advance and can approximate any function to any degree of accuracy provided 

that a finite number of hidden units is added to a hidden layer. However, it is well known 

from previous studies that neural networks suffer from a lack of systematic procedures, and 

their performance can be increased by enhancing the methodology of model building (Tang 

and Fishwick, 1993; Aras and Kocakoc, 2016). While recent studies focus on hybridization 

of neural networks with other techniques, the new insight of this paper is to target its own 

fundamental problems whose solutions are unclear, and which prevent neural networks from 

reaching better forecasting performances. Most of the papers related to forecasting build 

neural networks without concentrating on their crucial components, like the number of input 

and hidden nodes, the stopping rule, the selection of the final neural network model and the 

data size to be employed. Therefore, the contribution of this work is twofold. 

The first one is to deal with the uncertainty associated with the size of training data for 

neural networks in forecasting time series. There are two general claims in the field related 

with this issue. One of them is to use all available data regardless of structural changes on 

the series under investigation because of the powerful modelling abilities of neural 

networks. The other claim is to use just two years of data, as a rule of thumb, due to recency 

effect on the future observations being stronger than the older ones. Regarding this issue, we 
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exploited an econometric structural break test as a guide to determine the size of modelling 

data in neural networks. The data following the last structural break were used in the 

modelling process of neural networks, and compared its performance with all available data 

which is restricted to the last 10 years and, with Walczak’s suggestion (Walczak, 2001) of 

taking the data for the last two years. As is known, the time series recency effect claims that 

using the data that is nearer in time to the data to be forecasted will produce more accurate 

forecasting models (Walczak, 2001). The expectation from multiple-breakpoint tests in this 

study is to find the last structural change in the concerned series and then use this data size 

in the modelling process of neural networks with the hope that it may contain more similar 

data patterns with the future movements of the series and produce more accurate forecasts. 

The other crucial component directly affecting the success of an application of neural 

networks is to select the final neural network model among all neural networks built for an 

experiment (G. Zhang et al., 1998; Aras and Kocakoc, 2016). Selecting the final neural 

network model also means determining the essential parts of the architecture of a neural 

network model, such as the number of input units (lagged values in a time series 

application), and the number of hidden units (the degree of nonlinearity). Hence, in this 

study, the problem of data size for neural networks is examined together with the problem of 

the selection of the final neural network model. 

This paper’s second contribution is to take the stopping rule into account as an 

affecting factor for forecasting performances and to examine the interaction that might exist 

between the data size and the stopping rule. The Levenberg-Marquardt algorithm, the most-

used learning algorithm for training multilayer perceptron, is based on the use of second 

derivatives and known as one of the fastest and most efficient algorithms (Hagan et al., 

1996). Because of its speed, some stopping criteria are employed to stop the algorithm with 

the aim of protecting neural networks against over-learning. One of these criteria is the 

number of successive error increases in the validation set. If this number exceeds the 

allowable maximum number, then the algorithm is stopped before it starts to memorize or 

learn the peculiar properties of the training data. If the allowable number of validation 

increases is fixed at a large number, it can cause the algorithm to be exposed to more 

iterations than needed. This could play a key role in the generalization ability of a neural 

network, especially when employing a very fast algorithm such as the Levenberg-Marquardt 

algorithm. In contrast, if the allowable number of validation increases is fixed at a small 

number, then the algorithm can stop very early without sufficiently learning the data 

patterns. Therefore, the allowable successive error increases on the validation set is taken as 

an experimental factor in the scope of this study, and its potential interaction with data size 

is statistically investigated. 

The layout of the paper is as follows. Section 2 reviews the related literature. In 

Section 3, the model selection problem in forecasting time series with neural networks is 

described and a method designed to address this issue is defined. Section 4 presents data sets 

and their properties, and provides the experimental design and the parameters for the 

analysis, while Section 5 reports and analyses the corresponding results. Finally, some 

concluding remarks and future research directions are drawn in Section 6. 
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2. RELATED LITERATURE REVIEW 

 

The literature section consists of two parts in accordance with the purpose of the study. 

The first part deals with the applications of neural networks and some hybrid methods that 

use neural networks as their main component in forecasting oil prices. The second part is 

about the structural breakpoint tests. 

In the study conducted by Mirmirani and Li (2004), VAR and genetic algorithm-based 

ANNs models are compared to forecast oil price movements, and it was found that the ANNs 

model noticeably outperformed the VAR model. Xie et al. (2006) have utilized the Support 

Vector Machines (SVM) model to forecast the crude oil price. The proposed technique was 

compared with Autoregressive Integrated Moving Average (ARIMA) and ANNs models. As a 

result of this comparison, they concluded that SVM provides better forecasting results in two 

of the four sub-periods than ANNs, but both methods outperformed ARIMA. Moshiri and 

Foroutan (2006) have used ANNs, ARMA and GARCH models to predict the crude oil futures 

prices. They showed that the forecasting accuracy of ANNs is much better than other time 

series prediction approaches. Likewise, Shambora and Rossiter (2007) have employed the 

price predictions by ANNs to get buy and sell signals with the aim of constructing a crude oil 

trading system. The trading system yielded more profits than all other trading strategies. 

Similarly, Godarzi et al. (2014) have used a classic time series model to determine the factors 

affecting oil prices and found the time delays for the independent and dependent variables. 

After that, a neural network model with exogenous inputs (NARX) was employed using the 

results of the previous analysis. Comparisons among the classic time series model, a neural 

network without lags, and the NARX model were made, and more accurate forecasts were 

obtained with the NARX model. 

Chiroma et al. (2015) made use of genetic algorithms simultaneously to optimize the 

connection weights and topology of neural networks to attain more accurate forecasts of 

crude oil prices and to improve computational efficiency. The final model showed a 

performance improvement over the benchmark methods. J. Wang and Wang (2016) have 

benefited from one kind of Elman recurrent neural network (ERNN) with the aim of 

increasing the effects of recent events when predicting future crude oil prices. The exploited 

ERNN model has a higher forecasting accuracy than the methods in question. Indeed, these 

individual techniques have produced great accuracy in forecasting oil prices compared with 

traditional econometric methods. A rich bibliographic synthesis regarding applications of 

ANNs and computational intelligence techniques in forecasting the price of crude oil can be 

found in Hamdi and Aloui (2015) and Chiroma et al. (2013). By focusing on the review of 

the literature related to this topic, we can deduce that ANNs models have been the most 

widely used to forecast the crude oil price in the last decade. 

Despite the success of the soft computational models in the field of forecasting, they 

still suffer from some drawbacks (Gabralla and Abraham, 2013). To remedy these, hybrid 

models have been extensively developed in recent years. S. Wang et al. (2005) proposed a 

hybrid model called TEI@I, which is an integration of text mining, econometrics and neural 

networks with a rule-based expert system to forecast crude oil prices. As an econometric 

model, ARIMA is employed to find the linear components of the series and after that, the 

error terms found in the ARIMA model are modelled by neural networks. A rule-based 

expert system with web text mining is used to model irregular and infrequent events in the 

series. The proposed method has exhibited superiority over the previous models. Following 
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this study, Yu et al. (2008) tried to mimic the divide-and-conquer principle as 

decomposition-and-ensemble to simplify the forecasting task by using an empirical mode 

decomposition. After having each decomposed sub-series, these simplified series were 

modelled by a feed-forward neural network, and lastly forecasting results of these series 

were combined by means of an adaptive linear neural network to get the final forecasting 

result. In another study, Amin-Naseri and Gharacheh (2007) developed a hybrid artificial 

intelligence model consisting of feed-forward neural networks, genetic algorithm and k-

means clustering to forecast the monthly crude oil price and obtained satisfactory results. 

Ghaffari and Zare (2009) have improved a method based on soft-computing techniques 

such as the ANNs model and fuzzy logic approach. The proposed technique has shown a 

high level of accuracy and reliability in predicting the price of crude oil. Azadeh et al. 

(2012) have employed neural networks and fuzzy regression in a flexible algorithm to 

improve forecasting accuracy. The findings indicate that the proposed tool has the best 

prediction capability compared with the individual models. Bildirici and Ersin (2013) have 

tried to augment various GARCH family models with Logistic Smooth Transition 

Autoregressive (LSTAR) model and neural networks to model nonlinear volatility in oil 

prices. The obtained results have pointed out that the forecasting capabilities of neural 

networks are encouraging. Furthermore, Xiong et al. (2013) have put forward a hybrid 

model composed of empirical mode decomposition (EMD) based on neural networks and a 

slope-based method (SBM). The new technique was tested through three commonly used 

multistep ahead forecasting strategies, and the results indicate that the hybrid model with the 

strategy of multiple input-multiple output has the highest forecast performance. In a recent 

study, J. L. Zhang et al. (2015) proposed a hybrid method that decomposes oil price using 

an ensemble empirical mode decomposition (EEMD) method, and then models different 

components of the series by least squares support vector machine optimized via particle 

swarm optimization and the GARCH model. 

As for the literature related to structural breakpoint tests, it is known from a statistical 

point of view that structural change plays an important role in applied time series analysis. 

A structural break can affect model parameters in an undesired manner and negatively 

affects the forecasting performance of any model constructed on a data set that includes 

structural breaks worse than the one without any structural breaks. Harvey (1997) and 

Clements and Hendry (2001) claim that structural breaks are the cause of many unsuccessful 

economic forecasts. Chen et al. (2014) found that the existence of structural breaks in the 

series under investigation affects market efficiency, causality, and the forecast of future 

volatility for oil prices, and causes poor performance in forecasting made by some models, 

such as random walk models, moving average models, Ordinary Least Squares (OLS) 

models, and Autoregressive (AR) models. Furthermore, it can be expected that the findings 

in the classical time series analysis would ameliorate the time series models built by neural 

networks. The first tests trying to detect a structural change date back to Chow (1960) who 

used an F-statistic to perform a structural test at a known date. However, the breakdate must 

be known a priori and this constitutes a weakness of the Chow test. Quandt (1960) proposed 

a likelihood ratio test for a change in parameters over all possible candidate breakdates and 

took the one that maximizes the likelihood function. Unfortunately, the limit distribution 

was unknown. The difficulty in knowing a breakdate in advance was overcome in the early 

1990s by Andrews (1993) and Andrews and Ploberger (1994), who provided critical values 

for the Quandt statistic. Therefore, it is easily detected whether the time series under 
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investigation has a structural break without a priori knowledge about the breakdate. The 

next question drawing attention was that if the null hypothesis that there is no structural 

break is rejected, is it possible to have multiple structural breaks? This question was 

answered by Bai (1997) and Bai and Perron (1998, 2003) developing the Quandt-Andrews 

scheme for testing for multiple unknown breakpoints. Their method starts with testing a 

single breakpoint; if the null hypothesis is rejected, then the sample is divided into two parts, 

and the concerned test is implemented on these subsamples. Until the test fails to reject the 

null hypothesis, it continues in a sequential manner. An alternative approach is to use 

information criteria in estimating multiple structural changes. Yao (1988) has indicated that 

the Schwarz criterion is consistent in estimating the number of breaks. Following this study, 

Liu et al. (1997) suggested the use of a modified Schwarz criterion (LWZ criterion) and 

presented detailed simulation results to support their claim. We employed information 

criteria in determining the number of structural breaks of the concerned series in this study. 

Another way of identifying structural changes in a time variable is based on Markov 

switching models (de Souza e Silva et al., 2010; Zhu et al., 2017). Two main properties of 

these models are that the past can recur in the future, and the number of states is finite. 

Hence, it is inappropriate in cases where the variable of interest has many changing 

dynamics over time. However, recently, some papers are published to overcome these 

deficiencies of Markov switching models (Song, 2014; Dufays, 2016).  

 

3. MODEL SELECTION PROBLEM IN NEURAL NETWORKS AND THE 

INPUT-HIDDEN-TRIAL SELECTION METHOD 

 

3.1 Motivation 

 

The determination of the optimal network design is indispensable to guarantee 

successful forecasting results (Azoff, 1994). However, there are no scientific procedures for 

selecting the best network architecture (Rehkugler and Poddig, 1994). Therefore, the 

thorough knowledge of an expert and a long phase of experimentation are required to 

identify the optimal topology of an ANNs system (Lackes et al., 2009). Otherwise, and 

according to Walczak and Cerpa (1999), four factors have a significant impact on the ANNs 

accuracy in forecasting financial time series. These factors encompass the selection of input 

nodes, hidden layers, hidden units and learning technique. More accurate forecasting results 

were observed using only one hidden layer (G. Zhang et al., 1998; Kolasa et al., 2007; Lolli 

et al., 2017). Moreover, modelling with the backpropagation feed-forward neural network 

has drawn wide interest from academics and practitioners, especially in forecasting 

applications. Consequently, more attention should be paid to the specification of the input 

units and the number of hidden nodes to solve the problem of selecting neural networks that 

perform well with generalization ability. 

In fact, too many hidden units can cause an overfitting problem and too few nodes can 

lead to underfitting. Thereafter, the level of performance of the neural network and its 

generalization capacity are mainly related to a good number of hidden neurons. However, in 

a general way, preference is given to the use of a small number of hidden nodes to avoid the 

overfitting problem and to provide a good generalization capability (Walczak and Cerpa, 

1999). In this sense, several researchers have focused, in their neural network applications, 

on the use of rules of thumb to determine the optimal number of hidden units. These rules 
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are mainly aimed at avoiding the problem of overfitting and not to specify the optimal or 

nearly optimal number of hidden neurons; therefore, none of them have been considered as a 

universal rule (Xu and Chen, 2008). 

Another crucial factor that should be defined by modelling with neural networks is the 

number of past or lagged observations. This factor plays an indispensable role in capturing 

the true autocorrelation structure of a time series (Jasic and Wood, 2003). In fact, and like 

the use of an inappropriate number of hidden units, the introduction of an unnecessary or 

insufficient number of input variables may reduce the performance of neural networks. On 

the other hand, and based on the findings of many studies, identifying the relevant number 

of input variables is more important than the number of hidden units (Foster et al., 1992; 

Lachtermacher and Fuller, 1995; G. Zhang and Hu, 1998; G. P. Zhang, 2001). Thus, it is 

preferable to give priority to the selection of an appropriate number of input units in 

determining the design of the neural networks. This is the first step of the Input-Hidden-

Trial Selection (IHTS) method developed by Aras and Kocakoc (2016). 

 

3.2 The Formulation of the IHTS Method 

 

The first step of the IHTS method involves the selection of the number of input units. 

In this first step, neural networks are classified with respect to the number of input units. 

After that, the neural networks in each group are ordered according to validation MSE 

values. The highest and lowest 25% of these values are thereafter excluded from each group, 

and the rest of the validation MSE values are used to compute the mean values of each 

group. The optimal number of lagged observations (P) is, therefore, the group that 

represents the smallest mean value, and its mathematical development is the next: 

 

𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
𝒑=  

∑     ∑ 𝑴𝑺𝑬(𝒑,𝒒,𝒊)
𝒌 𝟐⁄
𝒛=𝟏

𝒏
𝒒=𝟏

(𝒌∗𝒏) 𝟐⁄
,        𝒑 = 𝟏, 𝟐 … , 𝒎 (1) 

 

𝑷 = 𝑴𝒊𝒏(𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
𝒑) (2) 

where m, n, k are the numbers of maximum permissible lagged observations/inputs, hidden 

neurons, and trials, respectively, and p, q, i are their corresponding values studied in the 

experiment. 

 

After fixing the best number of inputs (P), the second step in the IHTS method is to 

determine the best number of hidden neurons (Q). To do this, the neural networks with P 

input units are classified according to the number of hidden units. Then, neural networks in 

each group are ordered based on their validation MSE values and the highest and lowest 

25% of these values are eliminated from each group. Finally, the mean values of each group 

are calculated on the basis of the remaining validation MSE values. The best number (Q) is 

the group that represents the smallest mean value, and its formula description is as follows: 

 

𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
𝒒 =   

∑ 𝑴𝑺𝑬(𝑷, 𝒒, 𝒊)𝒌 𝟐⁄
𝒊=𝟏

𝒌 𝟐⁄
,             𝒒 = 𝟏, 𝟐 … , 𝒏 (3) 

 

𝑸 = 𝑴𝒊𝒏(𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
𝒒) (4) 
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After identifying the couple (P, Q), the third and final step in the IHTS model consists 

of selecting the trial (I) that performs well for both validation and training data. The trials, 

which are repeated k times with the same input-hidden combinations (P, Q), are assessed in 

terms of validation and training MSE values, and the ones located in the highest or lowest 

25% of the validation or training MSE values are excluded from the study. The rest of the 

trials, designated by s, are classified by giving one and s respectively for the smallest and 

the biggest MSE value for each dataset separately. Finally, an A matrix like the one in Table 

no. 1 is constructed to select the final neural network. The matrix rows are the remaining 

trials, composed of three columns: the first corresponds to the order of training MSE values, 

the second represents the order of validation MSE values, and the third represents the 

absolute difference between the first two columns. The purpose of the third column is to 

lead to selection of a neural network that keeps the performance difference between 

validation and training data as small as possible. By solving this matrix using the Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS), the best trial (I) will be 

defined. Now, after identifying the (P, Q, I) parameters of the final neural network, it is 

ready to judge its forecasting ability. The motivations for using the IHTS method in 

selecting a neural network and more details as to its superiority over the classic method can 

be found in (Aras and Kocakoc, 2016). 

 
Table no. 1 – The matrix to be used for the selection of the final neural network using the 

TOPSIS method 

 

4. DATA SET PROPERTIES AND EXPERIMENTAL DESIGN 

 

Our aim in this section is to present the data sets to be used and give details of the 

experimental design and parameters for the analysis. The data contain daily crude oil spot 

price series of West Texas Intermediate (WTI) from 3 January, 2006 up to 31 December, 

2015, and can be accessed from the site of the Federal Reserve Bank of St. Louis 

(https://fred.stlouisfed.org/series/DCOILWTICO). In this paper, despite there are a large 

number of crude oil price series (WTI, BRENT, Daqing, Dubai; among others), we focus on 

the US reference of crude oil price: the "WTI". This oil price reflects the trend of the 

international oil price as the WTI crude oil market is the world's largest oil market. 

Furthermore, WTI crude oil price represents a decisive factor in the configuration of prices 

of all other commodities (Alexandridis and Livanis, 2008). Also, it is widely utilized as the 

basis of many crude oil price formula (Yu et al., 2008). On the other hand, the reasons for 

selecting the daily data are that it is more complex and harder to model compared with 

weekly and monthly data and the size of the training data will be large so that the effects of 

structural changes are clearer in the series. This paper implements an information criteria 

approach to determining multiple structural breakpoints. For this purpose, EViews software 

is exploited to perform multiple structural change models. By default, the tests allow for a 

 Trials  Order of Training MSE Order of Validation MSE Absolute Order Difference 

 1 3 6 3 

A= 
2 2 s |2- s| 

3 s-1 3 | s-4| 

 ⋮ ⋮ ⋮ ⋮ 
 s s-2 1 | s-3| 
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maximum number of five breaks, employ a trimming percentage of 15%, and use the 0.05 

significance level for the sequential testing. These options are left at their default settings. 

However, heterogeneous error distributions are allowed across breaks. The details regarding 

the results of the test and all of the breakdates found are given in the next section. 

According to the Multiple-Breakpoint Testing via Global Information Criteria, it is 

found that the series under investigation has four breakpoints. The first one is 6 July, 2007. 

The second is 2 January, 2009. The third one and the last one are 1 November, 2010 and 7 

July, 2014, respectively. Therefore, the test suggests that we use the last 377 data points as 

the period of the last structural change for the model construction. The other data sets 

varying in size as the first factor of the planned experiment are presented in Table no. 2 in 

an increasing manner. The last two years’ data represent Walczak’s suggestion (2001) 

stating that two years of training data are required to produce optimal forecasting accuracy. 

The four and ten years’ data are employed to demonstrate the other claim, which says that to 

reach better quality forecasting models, it is necessary to have greater quantities of training 

data (G. P. Zhang et al., 2001; Box and Jenkins, 1994). Figure no. 1 shows the 

corresponding plot of each series under investigation. Thus, the explanation of the first 

factor in the experiment to be conducted is completed. 

 
Table no. 2 – The details of the data sets. 

Data Starting Date Data Size 

The last breakpoint 07/07/2014 377 

The last two years 02/01/2014 504 

The last four years 03//01/2012 1008 

The last ten years 03/01/2006 2518 

 

 

 
Figure no. 1 – The plots of varying data sizes. 
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The second factor to be considered consists of the allowable number of validation error 

increases. Training is stopped when the performance on the validation set continues to 

increase over a specified number of iterations. The number of validation checks is used to 

show the number of successive iterations that the validation performance is unable to 

decrease. As a default value for MATLAB, when this number reaches six, the training is 

stopped. In other words, this number means that the maximum allowable number of 

validation increases before the learning process is finished. The allowable number of 

validation error increases is the main stopping criterion exploited to improve the 

generalization of a neural network. The others are minimum gradient magnitude, maximum 

training time, minimum performance value and maximum number of training epochs, and 

they rarely cause the algorithm to halt. We observed that the algorithm is almost always 

stopped by the validation increase criterion. Hence, this criterion is taken into account as an 

experimental factor that directly affects the generalization of a neural network. Waiting the 

number of successive increases on the validation set to take the default value of six to stop 

iterations can bring about overfitting when it comes to using one of the fastest algorithms, 

like the Levenberg-Marquardt algorithm. For this reason, two smaller values of this 

criterion, two and four, are taken as the levels of the second factor for the experiment. 

After taking into consideration all of these factors, the experiment to be conducted for 

this study is formed as illustrated in Table no. 3. The number in the right upper corner of each 

cell represents a particular group, which is a combination of factor levels and will be used later 

to refer to the groups under examination. In all factor-level combinations, the experiment 

constructing neural networks was repeated 30 times. For each experiment, the numbers of 

input and hidden units were varied with 10 levels ranging from 1 to 10 with 30 different initial 

weights. In other words, 3,000 neural networks were built for one experiment. After that, the 

classic model selection strategy selecting a neural network with a minimum MSE value on the 

validation set and the IHTS model selection strategy have selected the final neural network 

models among those 3,000 neural networks. This building and selection process was replicated 

30 times. Thus, the two selection methods have 30 MSE and MAE values for each cell in the 

factorial design, which were calculated from the test data. The total number of neural networks 

built for this analysis was 1,080,000 (3,000 neural networks × 30 replications × 12 factor-level 

combinations). All experiments in this study were implemented in the MATLAB (R2015b) 

package with Intel Core i5-2400 CPU 3.10GHz and 4GB RAM. The computation time for 

training neural networks is heavily based on the size of training data, MATLAB version, and 

computer specifications. Under these conditions and the mentioned experimental design, the 

total training time for this study was about 180 hours. 

 
Table no. 3 – The factorial design for the experiment. 

 Validation Increases (2) Validation Increases (4) Validation Increases (6) 

The last breakpoint 30 neural networks 

experiments 

1  2  3 

   

The last 2 years  4  5  6 
      

The last 4 years  7  8  9 
       

The last 10 years  10  11  12 
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The Levenberg-Marquardt optimization algorithm is employed to train feed-forward 

neural networks with one hidden layer. Because of dealing with one-step-ahead forecasts, the 

output layer is composed of one neuron. As a popular choice for time series forecasting (G. 

Zhang and Hu, 1998; G. Zhang et al., 1998), the output neuron is formed with a linear 

activation function and all hidden neurons in the experiment consist of logistic activation 

functions. Theoretical results show that neural networks are universal functional 

approximators (Hornik et al., 1989), in other words, it can approximate any continuous 

function with arbitrary accuracy, providing that its architecture consists of a single hidden 

layer containing a sufficient number of hidden units. The selection of the best architecture is 

dependent on the problem at hand. Although there is no fixed architecture of neural networks 

that works well in almost all situations faced by researchers, it is known from the literature (G. 

Zhang et al., 1998; Rehkugler and Poddig, 1994; Jasic and Wood, 2003) that the neural 

networks with a simpler architecture tend to outperform, in most cases, the ones with the more 

complex architecture design. With the help of the IHTS method, it is expected in this study 

selecting simpler architectures of neural networks. The details regarding the architecture of the 

neural networks selected from the aforementioned selection strategies are presented in Table 5 

in the next section. The test data were the last 30 observations and used only for the 

comparison of forecasting performances. The size of the validation data that come before the 

test data was 30 observations and contained daily crude oil prices from 7 October, 2015 to 17 

November, 2015. When building neural networks for time series forecasting, it is known from 

previous studies (Nelson et al., 1999; Jain and Kumar, 2007) that making the series stationary 

improves forecasting performance. Therefore, if necessary, the series under investigation was 

made stationary by first differencing, and the differences were modelled. 

 

5. RESULTS AND ANALYSIS 

 

The results of multiple-breakpoint tests are given in Table no. 4. It is seen from this 

table that the Schwarz and LWZ criteria have their minimum values, which are shaded, at 

five and four breaks, respectively. The results of these criteria are given in Figures no. 2 and 

no. 3. In these figures, the green lines which are called fitted represent the numbers of 

intervals in which the Schwarz and LWZ criteria are found to be minimum. The 

corresponding residuals is the leftovers after fitting a regression line to every interval. There 

is a contradiction between these two information criteria. Casual inspection of the residuals 

from Figures no. 2 and no. 3 suggests that the model selected using the LWZ criterion is a 

good choice. As it is not necessary to have another breakpoint, as suggested by the Schwarz 

criterion, between 1 November, 2010 and 7 July, 2014, the series does not have any 

structural change in that period. As a result, four breaks reported in the last portion of Table 

no. 4 are taken as the identified structural breaks in this study. The visual demonstration of 

these structural breaks for the whole data can be seen in Figure no. 4. As can be seen from 

the figure, there are different structural characteristics in the series, some of which have an 

increasing trend, while the others contain a decreasing trend or some oscillations. The last 

structural change occurred on 7 July, 2014 and formed the data set that we focus on with the 

hope that better forecasts of the near future may be attained by considering the time series 

recency effect on the future values of the series. 
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Table no. 4 – The results of the multiple-breakpoint tests. 

Breaks 
Sum of 

Sq. Resids. 
Log-L 

Schwarz* 

Criterion 

LWZ* 

Criterion 

0 1,124,147 -11,254 6.104 6.117 

1 944,652 -11,035 5.937 5.955 

2 724,044 -10,701 5.677 5.708 

3 656,631 -10,578 5.585 5.629 

4 529,689 -10,307 5.377 5.433 

5 522,963 -10,291 5.370 5.439 
*Minimum information criterion values displayed with shading 

Estimated break dates: 

1: 7 July, 2014 

2: 1 December, 2010; 7 July, 2014 

3: 13 July, 2007; 22 February,2011; 7 July,2014 

4: 6 July,2007; 2 January,2009; 1 November, 2010; 7 July, 2014 

5: 6 July, 2007; 2 January, 2009; 1 October, 2010; 4 January, 2013; 7 July, 2014 

 

 
Figure no. 2 – The plot of actual, fitted and residuals using the Schwarz criterion 

 

 
Figure no. 3 – The plot of actual, fitted and residuals using the LWZ criterion 
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Figure no. 4 – The plot of multiple-breakpoint tests for daily WTI crude oil prices between  

3 January, 2006 and 31 December, 2015 

 

Table no. 5 shows the values of the average and standard deviation belonging to input and 

hidden units obtained from the neural networks selected by the classic and IHTS strategies for 

all factor-level combinations of the design. As mentioned before, these values are produced by 

the experiments of neural networks replicated 30 times for each factor-level combination. Data 

Size 1 represents the data from the last structural change and Data Sizes 2, 3, 4 correspond to 

the last 2, 4, 10 years of data, respectively, in the table. Validation Increases and Classic 

selection method are abbreviated as Val Inc. and C to save space. It is understood from Table 

no. 5 that the IHTS model selection strategy selects more parsimonious models compared with 

the classic method in all cells of the design. It is possible to give some interpretations based on 

the results of the IHTS method. The neural networks built on the data of the last structural 

breakpoint have smaller neural network architectures on average than those employing all of the 

other bigger data sets. This situation is denoted by bold characters in the table. As the factor 

level of the allowable consecutive error increases on the validation set is increased, the neural 

networks with more neurons are selected more often. These interpretations are not valid for the 

classic selection method. That is to say, the different factor levels have no effect on the 

architectures of the neural networks selected by the classic method. 

 
Table no. 5 – The average and standard deviation values of input and hidden units found in all 

factor levels of the experiment 

The levels 

of Data 

Size 

 Val Inc. (2) Val Inc. (4) Val Inc. (6) 

 Input Hidden Input Hidden Input Hidden 

 IHTS C IHTS C IHTS C IHTS C IHTS C IHTS C 

Data Size 1 Mean 2 7.87 2.83 6.10 2 7.20 3.33 5.47 2 7.50 3.50 6.17 

Std 0 1.98 1.18 2.73 0 2.16 1.37 2.27 0 2.22 1.46 2.70 

Data Size 2 Mean 2 7.37 7.63 7.70 2 6.60 8.40 7.03 2 6.87 8.50 6.87 

Std 0 2.16 1.87 2.17 0 2.17 1.50 2.14 0 2.18 1.25 1.98 

Data Size 3 Mean 2 8.73 3.50 7.40 2.60 8.27 3.83 7.10 3.30 8.30 3.87 7.30 

Std 0 1.36 0.82 2.33 1.22 1.80 1.49 2.40 1.51 1.70 1.79 2.23 

Data Size 4 Mean 5.60 8.53 4.93 6.77 8.37 8.77 6.87 8.47 8.37 8.77 7.40 8.43 

Std 2.76 1.52 3.23 1.92 1.30 1.25 2.56 1.85 1.27 1.30 2.33 1.85 
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With the purpose of making a statistical comparison between forecasting performances 

of the classic and IHTS model selection methods, a paired t-test was performed on each 

group of all factor-level combinations for MSE and MAE values. When sample sizes are 

large enough, it is known that this test has useful properties, such as robustness against 

variance heterogeneity, non-normality and the presence of statistical dependence (Iman and 

Conover, 1983). Table no. 6 contains the values of differences in means (Diff Mean) for 

MSE and MAE error measures and the corresponding significance levels of the t-test (p-

value). The test results whose difference in mean is positive and whose p-value is less than 

0.05 are denoted in bold font in the table. It is seen that the IHTS model selection method 

results in neural networks producing statistically significantly better forecasts in terms of 

both MSE and MAE values than the classic method in all groups of the design. 

 
Table no. 6 – A comparison between the forecasting performances of the classic and IHTS model 

selection methods through the paired t-test 

The levels of 

Data Size 
Statistics 

Val Inc. (2) Val Inc. (4) Val Inc. (6) 

MSE MAE MSE MAE MSE MAE 

Data Size 1 
Diff Meana 

p-value 
0.168 

(0.000) 

0.088 

(0.000) 

0.194 

(0.000) 

0.100 

(0.000) 

0.201 

(0.000) 

0.104 

(0.000) 

Data Size 2 
Diff Mean 

p-value 
0.130 

(0.000) 

0.064 

(0.000) 

0.104 

(0.000) 

0.053 

(0.000) 

0.113 

(0.000) 

0.058 

(0.000) 

Data Size 3 
Diff Mean 

p-value 
0.112 

(0.000) 

0.062 

(0.000) 

0.090 

(0.000) 

0.054 

(0.000) 

0.095 

(0.000) 

0.055 

(0.000) 

Data Size 4 
Diff Mean 

p-value 
0.065 0.027 0.049 0.025 0.048 0.025 

(0.000) (0.000) (0.012) (0.001) (0.000) (0.000) 

Note:  a Difference Mean = The classic – IHTS: positive value indicates the advantage of using IHTS. 

 

After the performance comparison made between the IHTS and classic selection 

methods, it is worth noting how their forecasting performances compare with the random walk 

model, which is a benchmark method used frequently by researchers due to knowing that the 

oil prices are under the influence of random movements and very complex to predict. Besides,   

showed that the crude oil market is under the influence of the random walk-type behaviour 

depending on time under investigation. For this reason, a one-sample z-test, which is used to 

determine whether the mean of a group differs from a specified value, is employed in the 

context of this study. The test assumes that the underlying population is normal, and the 

variance of the populations being compared must be known. These assumptions are not 

satisfied in most of the groups of this experimental design. However, if the sample size is large 

enough (greater than or equal to 30), this test can still be used for approximate results because 

of the central limit theorem (Newbold et al., 2009; King and Mody, 2010). 

In line with this purpose, the null hypothesis (H0) is formed in such a way that the error 

measure produced by the random walk model is taken as the mean of the population. The 

corresponding alternative hypotheses (H1) are constructed so that the means of the error 

measure obtained from the neural networks through the classic and IHTS selection methods 

are less than the population mean. With the random walk model, the related MSE and MAE 

values are found to be 0.9691 and 0.7913, respectively, on the test set. Based on these 

assumed population means, Table no. 7 presents the test results, which are a comparison 

between the random walk model and the neural networks arising out of the classic model 

selection method. The averages of MSE and MAE values for each group of the factorial 
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design and the corresponding p-values of the concerned test are included in the table. If the 

H0 hypothesis is rejected in favour of the alternative hypothesis, thereby having a p-value 

less than 0.05, this result is represented by bold font. As can be seen from Table no. 7, the 

random walk model is superior to the neural networks selected by the classic method for 

each factor-level combination in terms of both evaluation criteria. Table 8 is constructed in 

the same way as the previous table, but it investigates whether there is any performance 

difference between the neural networks selected by the IHTS method and the random walk 

model. From this table, it is observed that the neural networks through the IHTS method 

produce statistically significantly better forecasts than the random walk model in terms of 

MSE values in most of the groups under examination. However, the IHTS method 

significantly outperforms the random walk model with regard to MAE values in all groups 

of the design. Hereafter, the analysis will be performed on the results of the neural networks 

produced by the IHTS selection method because the forecasts of the neural networks from 

the classic selection method are statistically worse than the random walk, and the 

consequences based on it will not be reliable.  

 
Table no. 7 – A comparison between the forecasting performances of the classic model selection 

method and the random walk model through the one-sample z-test 

The levels of 

Data Size 
Statistics 

Val Inc. (2) Val Inc. (4) Val Inc. (6) 

MSE MAE MSE MAE MSE MAE 

Data Size 1 
Mean 

p-value 

1.1390 

(1.000) 

0.8521 

(1.000) 

1.1617 

(1.000) 

0.8640 

(1.000) 

1.1670 

(1.000) 

0.8666 

(1.000) 

Data Size 2 
Mean 

p-value 

1.0852 

(1.000) 

0.8353 

(1.000) 

1.0558 

(0.999) 

0.8259 

(0.998) 

1.0687 

(0.999) 

0.8356 

(0.999) 

Data Size 3 
Mean 

p-value 

1.0642 

(1.000) 

0.8266 

(1.000) 

1.0434 

(1.000) 

0.8193 

(0.999) 

1.0538 

(1.000) 

0.8246 

(1.000) 

Data Size 4 
Mean 

p-value 

1.0297 0.8013 1.0326 0.8071 1.0316 0.8088 

(1.000) (0.944) (1.000) (0.990) (0.999) (0.996) 

 
Table no. 8 – A comparison between the forecasting performances of the IHTS model selection 

method and the random walk model through the one-sample z-test 

The levels of 

Data Size 
Statistics 

Val Inc. (2) Val Inc. (4) Val Inc. (6) 

MSE MAE MSE MAE MSE MAE 

Data Size 1 
Mean 

p-value 

0.9713 

(0.906) 

0.7645 

(0.000) 

0.9679 

(0.289) 

0.7642 

(0.000) 

0.9655 

(0.038) 

0.7628 

(0.000) 

Data Size 2 
Mean 

p-value 

0.9551 

(0.000) 

0.7716 

(0.000) 

0.9521 

(0.000) 

0.7727 

(0.000) 

0.9560 

(0.001) 

0.7771 

(0.000) 

Data Size 3 
Mean 

p-value 

0.9518 

(0.000) 

0.7647 

(0.000) 

0.9537 

(0.000) 

0.7657 

(0.000) 

0.9588 

(0.000) 

0.7692 

(0.000) 

Data Size 4 
Mean 

p-value 

0.9651 0.7741 0.9839 0.7821 0.9837 0.7839 

(0.156) (0.000) (0.998) (0.000) (0.996) (0.043) 

 

The next question that we focus on is whether there is any interaction effect between 

Validation Increases and Data Size on the evaluation criteria, namely, MSE and MAE values. 

The interaction effect tells us whether the effect of training size on forecast accuracy is 

different for the number of allowed validation increases. If there is an interaction effect, not 

only can it be said that the effect of training size depends on the allowable number of 

validation error increases, but the reverse is also true, that the effect of the validation increases 
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allowed is dependent on training size. The statistical test most appropriate for this aim is two-

way Analysis Of Variance (ANOVA). Two-way ANOVA, an extension of one-way ANOVA, 

is employed if there is an interaction effect between two independent variables on a continuous 

dependent variable (Laerd Statistics, 2015). When a two-way ANOVA is chosen to apply to 

the problem at hand, one must check three assumptions of this test to make sure that the data 

fit the requirements of the test. These assumptions are: 1) there should be no significant 

outliers in any factor-level combination, 2) MSE and MAE values should be approximately 

normally distributed for each cell of the experimental design, and 3) the variance of MSE and 

MAE values should be equal in each cell of the design.  

The aforementioned assumptions can cause serious problems when they are not 

satisfied. For example, Osborne and Overbay (2004) showed how a small proportion of 

outliers can have detrimental effects on even simple analyses. The presence of outliers leads 

to the power of parametric and non-parametric tests declining (Zimmerman, 1994). A good 

feature of ANOVA tests is that the violations of normality assumption can be permitted 

because of the central limit theorem, but only if all groups have identical distributions and 

the sample sizes are large enough. Regarding the homoscedasticity assumption, having 

unequal variances can give rise to the instability of the true risk of committing a Type I error 

by making it much higher than the planned one and also, the power of the F-test decreasing 

substantially. Even under normality with unequal variances, the probability of a Type I error 

will be greatly increased as the number of groups grows (Wilcox, 1994).  

To detect any outliers, the boxplots shown in Figure no. 5 are generated. As can be 

seen in Figure no. 5, there are many outliers for most of the cells of the design according to 

both MSE and MAE values. As for checking the normality assumption, the Shapiro-Wilk 

test of normality is employed to assess whether this assumption is met or violated for each 

combination of factor levels. The Shapiro-Wilk test is recommended if you have smaller 

sample sizes (<50). The results of the Shapiro-Wilk test in terms of MSE values are 

presented in the column of normality of Table no. 9. In addition to the significance values 

belonging to the assumptions, the descriptive statistics found for all groups of the design are 

also included in Table no. 9. The groups that have p-values less than .05 are represented by 

bold font. We found that the normality assumption is violated by most of the groups under 

investigation. The most-used test for homogeneity of variance is Levene’s test, but this test 

can produce a p-value greater than .05 when variances are unequal, and when it comes to 

small samples this is particularly true (Erceg-Hurn and Mirosevich, 2008). Hence, the 

Fligner-Killeen test, a non-parametric test that is very robust against deviations from 

normality, was employed to assess the assumption of homogeneity of variances in this 

study. From the last column of Table no. 9, as assessed by the Fligner-Killeen test, the 

assumption of homogeneity of variances is violated for this analysis. The same results 

related to the assumptions are found for MAE values but not reported here to save space. 
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Figure no. 5 – The boxplots of MSE and MAE values for each cell of the design 

 
Table no. 9 – Descriptive statistics of MSE values obtained using the IHTS selection method for 

all groups of the design 

Groups Mean 
Tr 

Mean 

Std 

Dev 
Median Skewness Kurtosis Normality 

Homogeneity 

of Variance 

1 0.9714 0.9711 0.0094 0.9694 0.264 2.097 0.190  

2 0.9680 0.9671 0.0113 0.9670 0.896 4.713 0.010  

3 0.9656 0.9658 0.0109 0.9665 0.021 5.405 0.008  

4 0.9552 0.9524 0.0203 0.9514 3.014 14.280 0.000  

5 0.9522 0.9498 0.0228 0.9520 2.244 10.587 0.000  

6 0.9560 0.9524 0.0240 0.9535 1.960 8.093 0.000 0.000 

7 0.9518 0.9515 0.0065 0.9522 0.518 3.647 0.343  

8 0.9537 0.9528 0.0077 0.9525 1.505 5.854 0.000  

9 0.9588 0.9554 0.0177 0.9535 2.574 10.317 0.000  

10 0.9651 0.9627 0.0215 0.9602 0.975 3.138 0.008  

11 0.9839 0.9821 0.0278 0.9821 0.589 3.031 0.124  

12 0.9837 0.9772 0.0399 0.9716 2.509 10.697 0.000  

 

Modern robust statistics as a remedy for violation of the assumptions of the ANOVA F-

tests can be utilized to control the Type I error and to guard against low power when the 

assumptions are invalid. Some distinguished researchers claim that making use of classic 

parametric statistics will be misleading in the case of not satisfying the required assumptions 

(Keselman et al., 1998; Wilcox, 2011). In addition, a large number of papers have reached the 

conclusion that modern robust methods are more successful in maintaining the desired 

statistical properties in comparison with classic parametric methods (Zimmerman, 1994). One 

way of performing modern robust methods for two-way ANOVA is to use trimmed means 

with the intent of comparing measures of location. As one of the heteroscedastic methods, 

using trimmed means provides various benefits in avoiding practical problems frequently 

encountered, such as low probability of Type I and Type II errors and bias (Keselman et al., 

2008; Wilcox, 2012). Therefore, a robust two-way ANOVA based on trimmed means is 

carried out within the scope of this study. Taking advantage of using 20% trimmed mean is 

discussed in detail by Wilcox (2012); thus we have chosen this option here. In Table no. 10, 

the 𝒙𝑻𝒊 is the sample trimmed mean associated with the ith group of the factorial design. 
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Table no. 10 – Trimmed mean values of MSE and MAE obtained using the IHTS selection 

method for the planned experiment 

 MSE MAE 

 Val Inc. (2) Val Inc. (4) Val Inc. (6) Val Inc. (2) Val Inc. (4) Val Inc. (6) 

Data Size 1 �̅�𝑇1= 0.9711 �̅�𝑇2= 0.9673 �̅�𝑇3= 0.9665 �̅�𝑇1= 0.7641 �̅�𝑇2= 0.7626 �̅�𝑇3= 0.7624 

Data Size 2 �̅�𝑇4= 0.9516 �̅�𝑇5= 0.9497 �̅�𝑇6= 0.9522 �̅�𝑇4= 0.7697 �̅�𝑇5= 0.7712 �̅�𝑇6= 0.7771 

Data Size 3 �̅�𝑇7= 0.9515 �̅�𝑇8= 0.9528 �̅�𝑇9= 0.9539 �̅�𝑇7= 0.7644 �̅�𝑇8= 0.7655 �̅�𝑇9= 0.7681 

Data Size 4 �̅�𝑇10=0.9606 �̅�𝑇11=0.9803 �̅�𝑇12=0.9749 �̅�𝑇10=0.7722 �̅�𝑇11=0.7805 �̅�𝑇12=0.7786 

 

 
Figure no. 6 – Interaction plots for each factor with respect to MSE values 

 

 
Figure no. 7 – Interaction plots of each factor with respect to MAE values 

 

When the trimmed means of the MSE values for the smallest data size (called Data 

Size 1, consisting of data belonging to the last structural break) are examined from the first 

part of Table no. 10, it is seen that the smallest error measure is obtained at the highest level 

of the stopping rule. However, the smallest error values for the bigger data sizes are attained 

in the lower levels of the stopping rule, which allow fewer iterations to stop the algorithm. 

This situation is denoted by using bold font for the concerned cells of Table no. 10. For 

example, the smallest value for Data Size 2 (the last two years) is observed when the 

allowable number of successive increases on the validation set is four, but for the bigger 

data sizes, the smallest values are obtained in the lowest level of this factor. This can be seen 

visually by means of the interaction plots given in Figure no. 6. It is possible to make the 

same interpretations for the second part of Table no. 10 based on the trimmed means of the 

MAE values. Similarly, the neural networks built on the data set belonging to the last 

structural break exhibit better performances while the number of the allowable iterations is 

increased. The interactions plots in Figure no. 7 support these observations visually and 
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indicate that Data Size 1 leads to better forecasts according to MAE values than the other 

bigger data sizes. The finding that a lower number of iterations should be needed for the 

data sizes containing multiple structural changes are identified via Table no. 10, and this 

finding suggests that there may be an interaction effect between the two factors considered 

for the experiment. The interaction plots in Figures no. 6 and no. 7 provide an initial 

impression of whether there is an interaction. When the lines are not parallel, it might be a 

sign of the existence of an interaction effect, as is the case here. 

To determine statistically the existence of an interaction effect between stopping rule 

and data size, a robust two-way ANOVA based on trimmed means was conducted. The 

results of this test where the null hypotheses are formed as no main effects and no 

interaction are presented in Table no. 11. The first two rows in Table no. 11 represent the 

main effects of the two factors considered, and the last one indicates the interaction effect. 

The tests performed separately for MSE and MAE values show that there is a statistical 

interaction between the two factors under investigation. That is to say, it was found that data 

size has different effects on the performance of neural networks with respect to the stopping 

rule used. As the data size is increased, it will include more data patterns that are under the 

influence of different structural changes or contain more outliers and irregular data. To limit 

the influence of these patterns on the learning process, the number of iterations allowed can 

be kept at a lower level. Therefore, the stopping rule can be adjusted so as to allow fewer 

iterations to terminate the algorithm. However, the data following the last structural break 

will have more data patterns similar to each other because the effect of the structural 

changes is minimized. In such a case, it is observed that letting the stopping rule run to more 

iterations or learn the related patterns more closely can lead to better forecasting 

performances. The interpretation of the main effects can be misleading when you find a 

statistically significant interaction effect (Maxwell and Delaney, 2004). Hence, the 

meanings of the results of these tests are excluded. 

 
Table no. 11 – Two-way ANOVA based on trimmed means 

Effects 
MSE MAE 

value p-value value p-value 

Data Size 212.1500 0.001 119.4784 0.001 

Validation Increase 4.3017 0.126 11.5108 0.005 

Data Size: Validation Increase 15.0959 0.033 14.6343 0.038 

 

After finding a statistically significant interaction effect, the reason for this result can 

be investigated to get a deeper understanding of the problem at hand. One approach to 

achieving this is to use an interaction contrast, which compares the difference between two 

sets of differences. Thus, for example, we can understand the different effect that increasing 

data size from the last breakpoint to the last two years has on taking the allowable number of 

successive increases of validation error as two or six. This is the difference between two 

differences stated as (μ
T1

 - μ
T4

) - (μ
T3

 - μ
T6

), and forms the first null hypothesis for Table 

no. 12. The subscripts correspond to the same cells of the planned experiment used for Table 

no. 10. The same hypothesis can be expressed as the different effect that changing the 

allowable number of successive increases of validation error from two to six has on taking 

data size as the last breakpoint or the last two years, namely, (μ
T1

 - μ
T3

) - (μ
T4

 - μ
T6

). 

Hence, these two hypotheses can be tested at once. For the first row of Table no. 12, the null 
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hypothesis can be written as a linear contrast, namely, H0: μ
T1

 + μ
T6

 - μ
T3

 - μ
T4

 = 0. That is 

Ψ = μ
T1

+ μ
T6

 - μ
T3

 - μ
T4

, the contrast coefficients are c1 = c6 = 1, c3 = c4 = -1 and the null 

hypothesis is H0: Ψ = 0. The other rows can be expressed in a similar way. As can be seen 

from Table no. 12, the same analysis is conducted for both evaluation criteria. Ψ̂ is the 

estimated value of the linear contrast Ψ, and it is expected to be close to zero if the null 

hypothesis, H0: Ψ = 0, is not rejected. In total, there is a collection of 18 interaction 

contrasts that one might want to test for our experiment. Multiple comparisons are made for 

all possible interaction contrasts but only the ones that are statistically significant interaction 

contrasts are reported in Table no. 12. For multiple comparisons, a procedure that is an 

extension of the Welch-Sidak and Kaiser-Bowden methods to trimmed means is employed, 

details of which can be found in (Wilcox, 2011). The procedure is a heteroscedastic method 

for linear contrasts and controls the family wise error rate (FWE, the probability of making 

at least one Type I error when making multiple tests) such that it is less than or equal to α 

regardless of how many comparisons are made. 

The interaction contrasts that are statistically significant with respect to MSE or MAE 

values or both error measures are given in Table no. 12. They can be used to determine the 

source of the performance differences for the factor levels. For example, H0:(μ
T1

 - μ
T3

) - (μ
T7

 -

 μ
T9

) = 0 compares the difference in the error measure assessed by MSE or MAE values to the 

difference between setting the stopping rule as two and six while using the last breakpoint data 

and setting the stopping rule as two and six while using the last four years’ data. This 

difference is statistically significant according to both evaluation criteria by referring to the p-

value rows (.036 and .033 < .05, respectively). This result is parallel with the expectation that 

the effect of the stopping rule is different for the data size used and that data from the last 

structural break needs more iterations to stop the algorithm to reach better forecasting 

performance. The other hypotheses can be interpreted in a similar way. 

 
Table no. 12 – Multiple comparisons for the interaction contrasts 

The Null Hypotheses (H0) 
MSE MAE 

Ψ̂ p-value Ψ̂ p-value 

(𝜇𝑇1 − 𝜇𝑇4) − (𝜇𝑇3 − 𝜇𝑇6) = 0 0.00520 0.232 0.00907 0.003 

(𝜇𝑇1 − 𝜇𝑇3) − (𝜇𝑇4 − 𝜇𝑇6) = 0     

(𝜇𝑇1 − 𝜇𝑇7) − (𝜇𝑇3 − 𝜇𝑇9) = 0 0.00701 0.036 0.00527 0.033 

(𝜇𝑇1 − 𝜇𝑇3) − (𝜇𝑇7 − 𝜇𝑇9) = 0     

(𝜇𝑇1 − 𝜇𝑇10) − (𝜇𝑇2 − 𝜇𝑇11) = 0 0.02364 0.001 0.00972 0.017 

(𝜇𝑇1 − 𝜇𝑇2) − (𝜇𝑇10 − 𝜇𝑇11) = 0     

(𝜇𝑇1 − 𝜇𝑇10) − (𝜇𝑇3 − 𝜇𝑇12) = 0 0.01896 0.008 0.00798 0.045 

(𝜇𝑇1 − 𝜇𝑇3) − (𝜇𝑇10 − 𝜇𝑇12) = 0     

(𝜇𝑇4 − 𝜇𝑇10) − (𝜇𝑇5 − 𝜇𝑇11) = 0 0.02170 0.005 0.00671 0.112 

(𝜇𝑇4 − 𝜇𝑇5) − (𝜇𝑇10 − 𝜇𝑇11) = 0     

(𝜇𝑇7 − 𝜇𝑇10) − (𝜇𝑇8 − 𝜇𝑇11) = 0 0.01852 0.007 0.00714 0.075 

(𝜇𝑇7 − 𝜇𝑇8) − (𝜇𝑇10 − 𝜇𝑇11) = 0     
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6. CONCLUSION 

 

This paper is mainly aimed at discovering the effect that training size has on forecast 

accuracy. It is hypothesized that the greater the training size you have, the more accurate are 

the forecasts that you obtain. To test this hypothesis, the training set size was varied with the 

help of the structural breakpoint test and the last two, four and ten years as four groups. The 

effect of training size on forecast accuracy might not be the same for the stopping rule, so it 

was tested by conducting another study, which also took into account the stopping rule. The 

aim of the expanded analysis was to determine whether the effect of training size on forecast 

accuracy might be different for the allowed successive error increases in the validation set. 

This question is answered by determining whether there is a statistically significant 

interaction effect between training size and the allowed validation error increases. 

Interaction contrasts were run as one of the follow-up methods after finding a statistically 

significant interaction effect. In addition, a comparison between the IHTS and the classic 

selection methods was made to judge their performances on crude oil prices. Moreover, the 

random walk model was exploited to decide whether the forecasts by neural networks are 

valuable to researchers. In the end, some remarkable conclusions are drawn as follows. 

First, the IHTS method selected the neural networks with a simpler architecture in 

comparison with the classic selection method and established a clear superiority over the 

classic method in all cells of the experimental design. Additionally, the neural networks 

built on the data following the last structural break and selected by the IHTS method consist 

of more parsimonious models than those built on the bigger data sets. 

Second, the neural networks through the IHTS method yield statistically more accurate 

forecasts in terms of the MAE criterion in all combinations of factor levels than the random 

walk model used as a benchmark, and also exhibit better performance in terms of the MSE 

criterion in most of the factor-level combinations. Unfortunately, the neural networks via the 

classic method have produced more inaccurate forecasts of the prices of crude oil according 

to both evaluation criteria than the random walk model. 

Third, this study has found that there is a statistically significant interaction effect 

between data size and the stopping rule. In other words, the effect of data size on the 

forecasting accuracy depends on the number of allowable error increases on the validation 

set to stop the learning process. It is observed that setting the stopping rule so as to run 

fewer iterations will be useful while the size of data increases. This is because if the data 

size is large, it is possible for that data to include different structural changes. To limit the 

adverse effect of this situation on forecasting performance, one way is to keep the learning 

process at a reasonable level. However, if the size of data is relatively small in such a way 

that it is composed of the recent observations by a multiple-breakpoint test, setting the 

stopping rule so as to allow more iterations can provide an improvement in forecasting 

performance to be attained.  

Finally, it is seen that neural networks that learned the relevant amount of historical 

knowledge with the help of a multiple-breakpoint test outperform those using larger training 

sizes with respect to MAE values. This result also supports the idea of a time series recency 

effect against the idea that the larger training set you have, the better results you get. It 

should be noted that if one wants to improve the results with respect to the MSE criterion, 

using more data can help. As the value of MSE is more sensitive to unusual data points, 

more data will provide more unusual data for neural networks to learn. This may be the 
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reason for not obtaining better forecasting performance (in terms of MSE values) from the 

data from the last structural change. 

For future research directions, the analysis may be extended to take the exogenous 

variables in crude oil forecasting into consideration by improving the IHTS method. The 

data belonging to the previous structural changes can be weighted with respect to their 

distance from the last structural breakpoint with the intent of restricting their effect on the 

learning process. A similar study aimed at what the allowable number of successive error 

increases on validation sets should be can be done for the other optimization algorithms. 
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